Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Адсорбция кислорода



164. Лаптев А. Б., Бугай Д. Е., Рахманкулов Д. Л., Хаердинов Р. Э., Селимое Ф. А. Адсорбция ингибитора ИКУ-1 на стали и его влияние на кинетику электродных процессов //Сб. статей к материалам 12-й Междунар. конф. по произв. и примен. хим. реактивов и реагентов "Реактив-99". Вып. II, Уфа, 1999.- Уфа: Изд-во "Реактив", 1999.- С. 122-130.

Результаты радиохимических исследований адсорбции ингибиторов коррозии типа ИКБ показали, что при интенсивном перемешивании стационарная адсорбция ингибитора ИКБ-4 на поверхности углеродистой стали в водном растворе устанавливается через 3—4 ч и зависит от концентрации ингибитора и температуры. Различная зависимость адсорбции ингибиторов от их содержания, возможно, связана с полярностью растворителя, которая не позволяет при малом содержании ингибитора в среде покрыть поверхность металла слоем ориентированных дифильных молекул.

Адсорбция ингибитора приводит к

Следовательно, пластическая деформация практически не влияет на хемосорбцию исследованных ингибиторов коррозии. Однако это не означает, что защитные свойства ингибиторов, связываемые обычно с адсорбируемостью, также не изменяются при пластической деформации металла: например, адсорбция ингибитора КПИ-1 практически не зависит от деформации (кривая 1 для С), тогда как интенсивность разблагораживания стационарного потенциала ф в присутствии ингибитора (кривая 1) даже выше, чем в неингиби-рованной кислоте. Это объясняется деформационным нарушением в отдельных точках поверхности сплошности защитного действия указанного ингибитора и развитием локализованных анодных процессов в этих точках (аналогично питтингу). Сближение кривых 1 и 4 изменения стационарного потенциала коррозии указывает на ухудшение защиты при высоких деформациях.

i Следовательно, пластическая деформация практически не вли-j яет на хемосорбцию исследованных ингибиторов коррозии. Од-I нако это не означает, что защитные свойства ингибиторов, связываемые обычно с адсорбируемостью, также не изменяются при пластической деформации металла: например, адсорбция ингибитора КПИ-1 практически не зависит от деформации (кривая 1 для С), тогда как интенсивность разблагораживания стационарного потенциала ф в присутствии ингибитора (кривая /) даже выше, чем в неингибированной кислоте. Это объясняется деформационным нарушением в отдельных точках поверхности сплошности защитного действия указанного ингибитора и развитием локализованных анодных процессов в этих точках (аналогично питтингу). Ч Сближение кривых 1 и 4 изменения стационарного потенциала коррозии указывает на ухудшение защиты при высоких деформациях.

Адсорбция ингибитора на поверхности металла (увеличение Д^л и в ) и вытеснение сероводорода с поверхности металла (уменьшение [Н25]адс ) должны приводить к уменьшению i'c . Блокировка молекулами ингибиторов сероводорода, адсорбированного поверхностью, также должна уменьшать f , так как снижается эффективная концентрация HgS+. В присутствии в растворе ингибитора могут также измениться реакции, лежащие в основе кинетических уравнений. Ингибитор будет влиять как на кинетику реакции протонизации сероводорода (22), так и на кинетику реакции образования поверхностного катализатора (33). Препятствуя протеканию реакций (22) и (33), ингибитор будет уменьшать стимулирующее действие сероводорода.

Стойкость металлов к коррозионному разрушению прежде всего зависит от прочности связи между поверхностью металла и молекулами или ионами ингибитора. Для эффективной защиты металла от коррозионного разрушения достаточно, чтобы на металле адсорбировался монослой ингибитора [11]. Иногда адсорбция ингибитора приводит к образованию полимолекулярных слоев.

Все это является результатом адсорбции ингибитора на поверхности корродирующего металла. Последующее влияние адсорбированных молекул ингибитора сводится уже к изменению ими кинетики парциальных электрохимических реакций. Таким образом, адсорбция ингибитора является первичным необходимым актом ингнбирования. Под механизмом действия ингибиторов обычно понимают совокупность процессов ад- ~) сорбции ингибиторов и последующего воздействия адсорбированного вещества на протекание электрохимических реакций.

С. М. Решетниковым [12, 49] предложен метод дифференциации блокировочного и энергетического эффектов торможения коррозионных процессов на основе анализа кривых спада тока i — т и сопоставления их с соответствующими кинетическими изотермами адсорбции. В соответствии с [49] уменьшение тока Дг' = ('о — i (to — ток до введения ингибитора при т=0) интерпретируется как адсорбция ингибитора, тормозящего коррозионный процесс по блокировочному или энергетическому механизмам. Для блокировочного эффекта

Адсорбция предполагает возникновение более высокой концентрации ингибитора на поверхности раздела твердой п жидк'-й фазы. Имеющаяся в молекуле ингибитора полярная' группа обусловливает возникновение адсорбционных сил сцепления между атомами металла и молекулами ингибитора.

В ряде случаев физическая адсорбция служит лишь ступепь:ч для возникновения более? прочной химической связи - хемисорбннп ингибитора, которая характеризуется более высокой теплотой адсорбции.

Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами d-уровней, что переводит его в активное состояние.

адсорбция кислорода (или другого вещества) по достижении соответствующего адсорбционного потенциала Уадс;

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются.переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с О2, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкознергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.

Взаимодействие кислорода с чистой поверхностью металла протекает'в три этапа: 1) адсорбция кислорода, 2) нуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле *. Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул О2, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще ^слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3]. ;

Свободная энергия адсорбции на моль кислорода снижается с увеличением количества адсорбированного кислорода (связь кислород — субстрат становится слабее), поэтому многослойная адсорбция кислорода на металле М способствует в. конечном счете превращению его в кристаллический стехиометрический оксид. Другими словами, ДО для реакции

Мы можем также принять во внимание, что окислению предшествует быстрая физическая адсорбция кислорода, вслед за которой с меньшей скоростью идет хемосорбция атомов кислорода. Хемосорбированный кислород в свою очередь взаимодействует с металлом с образованием оксида металла. Эта реакция механически активируется при движении шероховатостей по поверхности металла. Количество оксида, которое образуется в результате такого процесса, лимитируется хемосорбцией. Скорость хемосорбции подчиняется уравнению, идентичному по форме уравнению (27) [6]. Следовательно, какой бы процесс ни преобладал, вид конечного выражения остается по существу одинаковым.

Упрощенная схема процесса в начальной фазе выглядит следующим образом: перемещение и деформация поверхностей под действием переменных касательных напряжений —> коррозия —» разрушение окисных и других пленок —> обнажение чистого металла и местное схватывание —> разрушение очагов схватывания и адсорбция кислорода на обнаженных участках.

Смачиваемость твердых тел феноло-формальдегидной смолой изучали на воздухе. Для всех исследованных твердых поверхностей является общим тот факт, что эти поверхности покрыты слоем кислорода в основном за счет адсорбции, либо окисления. Адсорбция кислорода на алмазе и графите на воздухе при комнатных температурах и выше неоднократно подтверждалась экспериментально [4]. Металлы на воздухе также покрыты слоем физически и химически сорбированного кислорода. Этим общим свойством исследованных твердых поверхностей, по-видимому, можно объяснить одинаковую смачиваемость их феноло-формальдегидной смолой. Смачиваемость и адгезия в исследованных системах должна, очевидно, определяться установлением связей между кислородом твердой поверхности и гидроксильными группами смолы. Деструкция смолы приводит к некоторой потере гидроксильных групп [6, 7, 8], что сказывается на ухудшении смачиваемости (см. табл. 2).

Адсорбция кислорода на металлах и зарождение оксида

Адсорбция кислорода на чистых метал-.л а х. Кислород адсорбируется на металлах в виде молекул, атомов и ионов: О2, О2~ , О-,О2~, О~, О. Молеку-.лярная форма адсорбции (СЬ) при положительных температурах обнаруживается только на металлах, оксиды которых в этих условиях нестабильны (серебро, ртуть, ллатина, золото). Критерием обратимости является воз-

На большинстве технических металлов адсорбция кислорода (вплоть до 6>1) протекает необратимо с образованием прочных химических соединений. Одним из показателей, нередко характеризующих прочность связи адсорбированных частиц с поверхностью металла, является теплота адсорбции. Теплоты хемосорбции изменяются в широких пределах — от 80 кДж/моль и меньше для серебра до 800 кДж/моль — для вольфрама.




Рекомендуем ознакомиться:
Активность механизмов
Активности кислорода
Активности теплоносителя
Абразивными свойствами
Акустических характеристик
Акустических преобразователей
Акустическим свойствам
Акустической оптимизации
Акустического излучения
Алфавитно цифрового
Алгебраическими уравнениями
Алгебраическим уравнениям
Алгебраического приближения
Алгоритмы обработки
Алгоритмы управления
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки