Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Автоматизации серийного



Предметом исследования и разработки в технологии машиностроения являются виды обработки, выбор заготовок, качество обрабатываемых поверхностей, точность обработки и припуски на нее, базирование заготовок; способы механической обработки поверхностей — плоских, цилиндрических, сложнопрофильных и др.; методы изготовления типовых деталей — корпусов, валов, зубчатых колес и др.; процессы сборки (характер соединения деталей и узлов, принципы механизации и автоматизации сборочных работ); конструирование приспособлений.

10. Познакомьтесь с номенклатурой устройств для механизации и автоматизации сборочных процессов, применяемых на отечественных заводах, установите возможность их приобретения или получения технической документации на предмет изготовления силами Вашего предприятия.

11. Подготовьте конкретные предложения по механизации и автоматизации сборочных процессов на Вашем предприятии.

Анализ основных методических положений непрерывной сборки машин с учетом современных проблем комплексной механизации и автоматизации производства показывает, что при переходе с ручной непрерывной сборки на автоматическую не возникает каких-либо новых проблем или специфических вопросов, которые могли бы показать устарелость освещенных в научно-технической литературе представлений в области осуществления непрерывного процесса сборки. Однако при автоматизации сборочных операций появляется много технических и экономических проблем иного характера. Несмотря на кажущийся типично ручной характер сборочных работ, сборка не только поддается механизации и автоматизации, но и нередко оказывается наиболее прогрессивным процессом машиностроительного производства. Но при этом необходимо правильно соразмерять намечаемые средства механизации и автоматизации с масштабом производства, степенью его стабильности и требуемой точностью сборки. Следует также учитывать, что достижение полной взаимозаменяемости не всегда экономически целесообразно, и в таких случаях находит применение селективная сборка, при которой собираемые детали предварительно подразделяются на ряд размерных групп, что обеспечивает весьма высокую точность сборки путем сопряжения деталей соответствующих размерных групп.

В настоящее время процесс автоматизации сборочных операций охватывает уже сравнительно многочисленные и разнохарактерные виды сборочных работ, но это преимущественно отдельные операции, как бы вкрапленные s общий технологический процесс. Примерами этого могут служить операции автоматической сборки валов роторов электродвигателей единой серии и сборки шарикоподшипников. Оборудование для установки и запрессовки ротора на вал электродвигателя встроено в автоматическую линию, предназначенную для изготовления валов. После запрессовки ротора на вал производится автоматизированная балансировка, включающая также автоматическое удаление излишнего веса металла ротора. Такие автоматические линии теперь работают на семи электромеханических заводах в разных городах Советского Союза и оправдали себя.

Теперь уже автоматизация отдельных сборочных операций — не редкость в нашем машиностроении. С каждым днем расширяется номенклатура сборочных операций с заменой ручного труда автоматическими устройствами и машинами. Созданы все условия для осуществления автоматической сборки в больших масштабах. На очереди осуществление сборки целых машин. Более всего способствует развитию автоматизации сборочных операций создание узкоспециализированных заводов для массового изготовления узлов и агрегатов машин. Именно на этой базе будет развиваться автоматизация сборочных процессов.

Опыт автоматизации сборочных операций в машиностроении показал, что основным элементом применяемого оборудования являются загрузочно-раз-

Оборудование для автоматизации сборочных работ должно удовлетворять теперь следующим требованиям: 1) иметь устройства, обеспечивающие возможность регулирования режима работ; 2) конструкции оборудования должны быть такими, чтобы оператор не мог самовольно изменять его наладку; 3) транспортирующие устройства должны работать с предельно возможными в данном случае скоростями; 4) центральный пульт управления, координирующий работу всей автоматической сборочной линии, должен иметь обратную связь от щитов управления отдельными агрегатами, с соответствующей световой и звуковой сигнализацией, отмечающей любую неисправность в работе каждого агрегата (такая же сигнализация предусматривается и на индивидуальных щитах управления); 5) используемое оборудование должно допускать переналадку его на автоматическую сборку новых видов изделий с минимальными затратами.

Разработанные в нашей стране роторные автоматические линии оказались эффективным средством автоматизации сборочных операций. В одном роторе возможно параллельное или последовательное выполнение нескольких сборочных операций. Автоматическая линия, состоящая из группы роторных машин, с успехом выполняет целый комплекс операций сборки. Значительная часть вновь изготовляемых роторных автоматических линий предназначается для сборочного процесса. Эти линии по своей компоновке отличаются от обрабатывающих роторных линий тем, что, кроме межоперационных транспортных роторов, снабжены питающими роторами для подачи комплектующих деталей и узлов. Созданы роторные автоматические линии для сборки втулочно-роликовых цепей, электролитических конденсаторов, непроволочных сопротивлений, щелочных аккумуляторов, химических источников тока и т. д. Эти линии осуществляют сложный процесс сборки, в который входят и механические операции, и наполнение емкостей

Экономическая эффективность автоматизации сборочных процессов зависит, с одной стороны, от достигнутых показателей ручной или механизированной сборки (производительности, зарплаты), с другой — от потенциальных возможностей проектных решений оборудования (его стоимости, быстродействия, надежности в работе и т. д.). Основная задача проектных технико-экономических расчетов — связать эти показатели в виде функциональных зависимостей и на их основе определить, достаточны ли технические и экономические предпосылки для автоматизации сборочных процессов в данных конкретных условиях. Ручная сборка, как правило, не связана со значительными капиталовложениями (Ki — 0), затратами на инструмент, электроэнергию, вспомогательные материалы (т = 0); себестоимость определяется лишь заработной платой рабочих-сборщиков (Зщ) и их производительностью QJ.

Для автоматизации сборочных процессов используют пневмовихревые методы ориентации и сопряжения деталей. Отсутствие жесткого кинематического замыкания ориентируемой детали и ориентирующего устройства снижает возможность заклинивания деталей в процессе их соединения. Вихревой поток газа способен передавать детали значительный крутящий момент, что улучшает условия сборки цилиндрических деталей, а в случае сборки нецилиндрических деталей — создает возможности для автоматического поиска расположения детали в пространстве, позволяет влиять на усилие, необходимое для сборки, и, следовательно, на осуществление сборочного процесса в целом. Стабилизация осевого положения детали в вихревой трубе обеспечивает использование ориентирующего устройства в качестве загрузочной механической руки.

агрегатных станков-полуавтоматов в десятки раз выше, чем многооперационных полуавтоматов, а стоимость ниже. В опытном производстве, где номенклатура изделий не повторяется, необходим широчайший диапазон переналадок технологического оборудования, который можно обеспечить лишь при использовании ЭВМ. В стабильном же производстве, с постоянной номенклатурой выпускаемой продукции, серийная обработка производится лишь потому, что масштабы выпуска не позволяют загрузить каждую единицу оборудования одними и теми же изделиями. Здесь участки из универсальных станков-полуавтоматов с ЧПУ или технологических комплексов с управлением от ЭВМ может заменить один переналаживаемый многошпиндельный агрегатный станок-полуавтомат, на котором несколько деталей обрабатываются одновременно десятками инструментов, производительность его несоизмеримо выше, чем одноинструментных станков, а переналадка значительно короче. Поэтому выпуск лишь одношпиндельных станков с ЧПУ с технологическими и компоновочными схемами, унаследованными от неавтоматизированного производства, следует считать правомерным лишь на ранних этапах их развития. Неизбежен массовый переход к использованию многошпиндельных и многопозиционных станков с ЧПУ, начиная с простейших, выполняющих параллельную обработку нескольких деталей по одной программе. Системы с распределительными валами, кулачками и копирами, по-видимому, еще долго будут преобладающими при автоматизации управления в массовом производстве, несмотря на то, что в их конструкции мало электроники и нет адаптации. Системы ЧПУ, прямого цифрового управления от ЭВМ и др. мобильны и поэтому эффективны при автоматизации серийного, а в будущем и единичного производства. Их значимость для массового производства не в замене сложившихся технических решений, а в их дополнении, в реализации невыполнимых ранее функций управления, в первую очередь — организационно-экономических. Так, применение АСУ ТП с функциями технической и статистической диагностики работы автоматических линий должно стать основой высокопроизводительной эксплуатации линий, сокращения их простоев по техническим и организационным причинам.

1.2. ТЕНДЕНЦИИ РАЗВИТИЯ СРЕДСТВ АВТОМАТИЗАЦИИ СЕРИЙНОГО И МАССОВОГО ПРОИЗВОДСТВА

Длительное время основным направлением комплексной автоматизации машиностроения было решение задач, связанных с массовым производством, где создано и внедрено множество машин-автоматов и полуавтоматов, автоматических и поточных линий: 80—90 % таких деталей, как блоки цилиндров и головки блоков двигателей, валы коробки передач, массовые подшипники и др., обрабатываются на автоматических линиях. Однако это оборудование как правило является специальным, т. е. на обработку других деталей не переналаживается. Поэтому серийное производство длительно базировалось только на универсальном неавтоматизированном оборудовании (токарные станки, кривошипные прессы, сварочные посты и др.), малопроизводительном, но достаточно мобильном (быстро переналаживаемом на обработку других деталей). Переломным моментом в автоматизации серийного производства явилось появление машин с числовым программным управлением, сочетавших высокие производительность и мобильность благодаря наличию систем управления на электронной основе. Первоначально с ЧПУ строились главным образом металлорежущие станки-полуавтоматы токарной, фрезерной, расточной и сверлильной групп. В настоящее время с ЧПУ выпускаются сварочные машины, прессы, станки для электрофизической и электрохимической обработки, термическое оборудование и др. Можно отметить некоторые тенденции развития оборудования с ЧПУ, характерные для современного этапа научно-технического прогресса.

Четвертая тенденция, которая все более влияет на развитие средств автоматизации серийного производства, —это переход от индивидуальных пультов программного управления (где программоносителями служат магнитная лента, перфолента и др.) к специальным управляющим мини-ЭВМ, что стало возможным благодаря успехам микроэлектроники и вычислительной техники. Переход от элементов с малой степенью интеграции, которые применялись в традиционных пультах ЧПУ, к большим интегральным схемам (БИС) позволяет резко уменьшить габариты управляющих устройств, повысить надежность в работе, расширить функциональные возможности управления. Следующим шагом является переход от специальных БИС к универсальным — так называемым микропроцессорам. Они включают помимо процессорных элементы постоянной и оперативной памяти, а также элементы связи с внешними устройствами. Путем комбинации этих элементов можно строить малогабаритные управляющие устройства, выполняющие широкий круг функций по обработке информации и управлению исполнительными органами в соответствии с заданной программой работы, сигналами датчиков и т. д. Поэтому отпадает необходимость в специальных программоносителях, лентопротяжных механизмах, считывающих устройствах и др.

И наконец, наиболее общей тенденцией развития средств автоматизации серийного производства является переход от отдельных, не связанных между собой станков с индивидуальными процессорами, к автоматизированным технологическим комплексам, управляемым от ЭВМ, т. е. переход от локальной автоматизации к комплексной. Такой комплекс включает: а) комплект технологического оборудования, необходимого и достаточного для обработки определенного типа деталей (валов, шестерен, корпусов и др.); б) транспортно-накопительную систему; в) автоматизированную систему управления технологическими процессами (АСУ ТП), которая реализует не только непосредственно управля-

Таким образом, при автоматизации серийного производства во все возрастающей степени используется опыт автоматизации массового производства (создание оборудования с совмещением операций, унификаций конструкций, автоматизация на уровне систем машин и т. д.). Развитие и совершенствование технических средств автоматизации массового производства (машин-полуавтоматов и автоматов, автоматических линий и цехов) продолжается, в том числе на основе опыта автоматизации серийного производства. Так, в автоматических линиях из агрегатных станков вместо прежних релейно-контакторных систем устройств управления и командоаппаратов на механической основе широко внедряются бесконтактные устройства и процессоры на электронной основе, вплоть до микро-ЭВМ, функционально сходных с аналогичными устройствами станков с ЧПУ и автоматизированных технологических комплексов. Это позволяет не только управлять всеми функциональными узлами (силовыми головками и столами, поворотными устройствами, шаговыми транспортерами, приспособлениями для зажима и фиксации деталей и др.), но и получать необходимую информацию для анализа функционирования линий, в том числе длительности простоев и их причин.

ОПТИМИЗАЦИЯ ПРОЕКТНЫХ РЕШЕНИЙ ПРИ КОМПЛЕКСНОЙ АВТОМАТИЗАЦИИ СЕРИЙНОГО ПРОИЗВОДСТВА

Групповые производственные участки станков с ЧПУ получили уже достаточное распространение и являются важнейшим средством автоматизации серийного производства. Автоматизированные технологические комплексы с управлением от ЭВМ используются в производственном процессе при механической обработке (резанием) и на завершающих операциях, прежде всего —операциях нанесения на детали гальванических покрытий. Системы для механической обработки деталей включают станки с ЧПУ, межстаночные транспортеры, устройства загрузки и съема (в том числе — манипуляторы и промышленные роботы) и т. д.

1.2. Тенденции развития средств автоматизации серийного и массового производства .......................... 8

Глава 9. Оптимизация проектных решений при комплексной автоматизации серийного производства............ 233

Трудность автоматизации серийного и мелкосерийного производства связана с




Рекомендуем ознакомиться:
Абсорбционной холодильной
Автомобильные перевозки
Автомобильных тракторных
Автомобильного двигателя
Автомобиль автомобиль
Автомобиля составляет
Автомобилей различных
Автономными системами
Авторский коллектив
Автотракторных двигателей
Аустенита легирующие
Ацетиленовых генераторов
Аустенита протекает
Аустенита вследствие
Аустенитные жаропрочные
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки