Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Безразмерных критериев



стия) в широком диапазоне значений расстояний и диаметров построено семейство безразмерных кривых амплитуда — расстояние—диаметр (АРД-диаграмма). На рис. 2.12 показана АРД-диаграмма в безразмерных координатах, указанных ранее. По оси ординат отложена величина Р'/Р0 в отрицательных децибелах (нуль соответствует случаю, когда вся излученная преобразователем энергия возвращается к нему). На кривых показана максимальная

Для вычисления сигнала Рт из (2.47) применяют метод моделирования. Выделяют безразмерные параметры, от которых зависит решение, и строят систему кривых в безразмерных координатах. Если излучатель и приемник одинаковы, таких параметров четыре. Удобно выбрать следующие: отношение расстояния между преобразователями г=х к длине ближней зоны Гб, Ь/а — отношение радиусов дефекта и преобразователя, п/г — отношение расстояния дефекта от излучателя к расстоянию между преобразователями, у/а — отношение смещения дефекта от общей оси преобразователей к их радиусу. Однако параметр у/а можно исключить, если указывать на номограмме минимальные значения Р^/Рс, т. е. соответствующие наибольшему ослаблению сквозного сигнала при перемещении дефекта в плоскости MN. Такая постановка задачи вполне соответствует реальным условиям контроля, когда отыскивают минимум прошедшего сигнала. Параметр г\/г полагают равным 0,5, т. е. считают, что дефект расположен посередине между преобразователями. Позднее будет рассмотрено влияние изменения у/а и п/г.

Рис. П.11. Поле излучения — приема круглого преобразователя в безразмерных координатах: слева — кривые для короткого импульса, справа — для длинного импульса

Постоянство J3THX величин для данных текущих dm и Т независимо от режима процесса сушки позволяет семейства кривых сушки и нагрева представить едиными обобщенными кривыми сушки и нагрева, что составляет основу методов обобщения кинетических кривых в координатах dm — Nt, dm — Nit, Г - t/t, и др., а также в безразмерных координатах.

Расчет ослабления амплитуды при контроле теневым методом. На диаграмме, приведенной на рис. 58, в безразмерных координатах показано максимальное ослабление /С0 сигнала дефектом, расположенным посередине между одинаковыми излучающим и приемным преобразователями. Заштрихованные зоны соответствуют разбросу, вызываемому различной формой и длительностью излучаемых импульсов, Если дефект расположен не посередине, то, пользуясь графиками (рис. 59), можно учесть его смещение в сторону излучателя или приемника.

С увеличением давления уменьшаются размеры пузырька в момент возникновения и отрыва; увеличиваются число центров и частота отрыва пузырей от этих центров. Степень влияния на них давления зависит от удаленности рассматриваемого состояния от критического, так как она определяет степень метастабильности жидкости, вероятность гетерогенных флуктуации плотности, а также количественные изменения физических свойств вещества. С приближением термодинамического состояния к критическому влияние этих факторов увеличивается и соответственно увеличивается влияние давления на теплоотдачу. Это отчетливо следует из рис. 13-6, построенного в безразмерных координатах для ряда жидкостей. В 'нем опытные данные по оси ординат отложены в виде отношений а/У5-7 при текущем значении давления р

На рис. 94 в безразмерных координатах изображено распределение плотности тока внутренней утечки, согласно уравнению (338), для случая катодной защиты изолированной внешней поверхности трубопровода при незащищенной покрытиями внутренней поверхности, т. е. при R » 0. Как следует из графика, максимальное значение тока анодной поляризации соответствует точке asx « 2. С увеличением коэффициента затухания ссв точка максимума смещается к месту подключения (х == 0) отрицательного полюса источника тока катодной защиты, а величина максимума становится больше и форма — острее.

Рис. 94. Распределение плотности поляризующего тока (в безразмерных координатах) на внутренней поверхности трубопровода при катодной защите наружной поверхности

Распределение напряжений и деформаций по стержню при уравнении состояния вида (4.4) получим из решения волнового уравнения. В безразмерных координатах х, t и переменных о, е, определяемых соотношениями х = х/с0?, t = t/t,, о = (ст —ат)/ат, е = (s •— ет)/8т, уравнение состояния и волновое уравнение образуют систему, решение которой определяет распространение волны:

решения в безразмерных координатах представлены на рис. 68— 70. По результатам расчетов фронт упруго-пластической волны имеет упругий участок (упругий предвестник), распространяющийся со скоростью упругих волн, и упруго-пластический участок (обычно называемый пластической волной), скорость распространения которого несколько ниже скорости упругой волны.

На рис. 2.11 представлены линии постоянного уровня функции плотности двумерного распределения (2.22). Они изображены в безразмерных координатах z\ = (х\ — Ai)/ai и z% = (xz — Hz) fan-Уравнение кривых постоянного уровня можно найти, приравняв константе показатель экспоненты в формуле (2.22). Произведя замену переменных z/i — Zi+22 и yz = z\ — zz, нетрудно показать, что эти кривые являются эллипсами с отношением главных осей, равным [(1 + г)/(1 — г)]1/». На рис. 2.11 значение коэффициента корреляции меняется от г = —0,9 до значений, близких к +1. Для сильной отрицательной корреляционной связи г « — 1 '(сигналы находятся в противофазе) эллипсы узкие, вытянутые влево вверх. При сильной положительной корреляционной связи г « -J-1 (сигналы находятся в фазе) эллипсы вытянуты вправо вверх. Для независимых сигналов (г = 0) линии уровня функции плотности нормального двумерного распределения представляют собой окружности. Чем больше корреляционная связь между рассматриваемыми сигналами, тем более вытягиваются и сужаются эллипсы.

Число выбранных размеров параметров п определяет число безразмерных критериев k по выражению

Коэффициент теплонасыщения для трех основных схем нагрева при сварке определяют по номограммам, приведенным на рис. 6.11, в зависимости от безразмерных критериев времени т и безразмерных расстояний от источника теплоты до рассматриваемой точки р.

Из (1) следует, что с помощью коэффициента температуропроводности а (см/с) термический КПД можно представить в виде произведения следующих безразмерных критериев:

5. Таким образом, представление термического КПД в виде произведения безразмерных критериев позволяет сделать вывод о том, что кривая с единственным максимумом для Т)т порождается, во-первых, мультипликативной природой самого гт, а во-вторых, характером изменения каждого из составляющих термический КПД критериев.

Согласно основной теореме метода анализа размерностей (я-т е о р е м е) зависимость между N размерными величинами, определяющими данный процесс, может быть представлена в виде зависимости между составленными из них N—К безразмерными величинами, где К — число первичных переменных с независимыми размерностями, которые не могут быть получены друг из друга. Например, в уравнении (9.59) общее число переменных 7, из них 4 первичных (их мы принимали за единицы измерения), соответственно безразмерных критериев в уравнении (9.61) jV—К = =7—4=3.

Таким образом, в данном случае п = 4, k = 2; следовательно, число безразмерных критериев равно двум. В качестве этих крите-

Установленные результаты целесообразно уточнить, перейдя от безразмерных критериев скорости к действительным. Для этого, положив М2 = 1, преобразуем (11) к виду

В случае граничного условия III рода, когда тепловой поток линейно зависит от температуры поверхности Tw и, кроме того, определяется еще двумя «внешними» параметрами Те и а, требуется введение двух безразмерных критериев. Помимо m решение задачи определяется также критерием Тихонова [Л. 3-1] х =-----.

Проведенный выше анализ показал, что разрушение теплозащитных материалов складывается как результат некоторого равновесия уровня внешнего воздействия со стороны набегающего газового потока и способности материала отводить или рассеивать тепло. В газодинамике и теории теплообмена принято характеризовать условия течения набором безразмерных критериев, таких как числа Маха, Рейнольдса, Нуссель-та, Прандтля или Льюиса (см. гл. 2). С другой стороны, условия нестационарного прогрева твердых неразрушающихся тел также характеризуются некоторыми безразмерными критериями •— числами Фурье, Био и рядом других. По аналогии, вероятно, можно было бы поставить вопрос о поиске критерия для процесса разрушения.

неравномерностью разрушения контакта все названные выше явления имеют статистическую природу. Сложный комплекс взаимосвязанных физико-химических явлений, происходящих на поверхностях контактирующих тел (в микро- и макромасштабах) и приводящих к изменению физико-механических свойств материалов в пятнах фактического контакта, действие температурных градиентов, стахостический характер разрушения микрообъемов — все это затрудняет получение полного математического описания основных процессов, влияющих на формирование силы трения в реальных условиях, ответственных за механизм и интенсивность процесса изнашивания материалов. В связи с отсутствием исходных уравнений, содержащих в своей структуре связи всех основных влияющих факторов, для процесса моделирования целесообразно использовать анализ размерностей физических величин, характеризующих трение и износ тел. Анализ размерностей исходных величин, определяющих процесс, оказывается полезным, когда физическая сложность механизма явлений и недостаточная изученность основных закономерностей не позволяют получить достаточно полную математическую трактовку процесса. Условия подобия и закономерности моделирования устанавливаются на основании я-теоремы подобия, согласно которой результаты физического эксперимента могут быть обработаны в виде зависимостей между безразмерными комбинациями величин, участвующих в исследуемом процессе. Функциональные зависимости, характеризующие процесс и представленные в виде безразмерных критериев подобия, остаются справедливыми для всех процессов, имеющих численно одинаковые с изучаемым критерии подобия.

Во ВНИИНМАШ при проведении ускоренных стендовых испытаний со случайным нагружением используются устройства, основанные на новом простом методе измерения функций взаимной корреляции и автокорреляции случайных процессов с использованием наложения определенным образом выбранных реализаций одного из процессов, между которыми находится эта функция корреляции. Используемые при этом алгоритмы имеют свои преимущества и недостатки. Предполагается провести исследования с целью решения вопроса: насколько этот метод перспективен при проведении ускоренных испытаний и построении коррелометров вообще. Большинство изделий машиностроения эксплуатируются в широком диапазоне условий, характеризующих нагруженность. В связи с этим проводятся исследования с целью создания безразмерных критериев нагруженности, отражающих связь режимов с долговечностью изделий и позволяющих нормировать режимы испытаний, эквивалентные комплексу нагрузок, воздействующих на изделия в реальной эксплуатации.




Рекомендуем ознакомиться:
Благоприятные возможности
Балластного сопротивления
Благоприятное соотношение
Благоприятно сказывается
Блестящей поверхностью
Блестящую поверхность
Ближайшего стандартного
Ближайшую стандартную
Блокирующие устройства
Блюмингов слябингов
Большинства используемых
Большинства композитов
Большинства металлических
Большинства органических
Большинства применяемых
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки