Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Биметаллических материалов



Фрикционные композиционные материалы представляют собой сложные композиции на медной или железной основе. Коэффициент трения можно повысить добавкой асбеста, карбидов тугоплавких металлов и различных оксидов. Для уменьшения износа в композиции вводят графит или свинец. Фрикционные материалы обычно применяют в виде биметаллических элементов, состоящих из фрикционного слоя, спеченного под давлением с основой (лентой или диском). Коэффициент трения по чугуну для фрикционных материалов на железной основе 0,4—0,6. Они способны выдерживать температуру в зоне трения до 500—600 °С. Применяют фрикционные материалы в тормозных узлах и узлах сцепления (в самолетостроении, автомобилестроении и т. д.).

Фиг. 21. Типы биметаллических элементов.

Типы термобиметаллических элементов показаны на фиг. 21.

Фиг. 21. Типы биметаллических элементов.

Типы термобиметаллических элементов показаны на фиг. 21.

Чувствительный элемент биметаллических термометров изготавливается из пластины, состоящей из двух или более слоев разнородных металлов, сваренных между собой по всей плоскости соприкосновения. Пластина может быть предварительно деформирована. При нагреве биметаллической пластины из-за различия коэффициентов линейного расширения ее слоев возникает деформация изгиба, пропорциональная изменению температуры. На рис. 1.43 показаны наиболее распространенные конструктивные исполнения чувствительных биметаллических элементов. Варианты а и б используются главным образом в качестве реле температуры, в к г — для непосредственного отсчета показаний термометров. Для этого один конец чувствительного элемента закрепляется, а второй соединяется с передаточным или непосредственно с показывающим устройством. Диапазон измерения биметаллических тер-

При расположении экономайзера в коррозионной зоне температуры целесообразны чугунные экономайзеры. Однако они применимы лишь при давлении до 20— 25 бар. В парогенераторах высокого давления возможно устанавливать чугунные ребристые экономайзеры на стальной трубчатой основе — биметаллические экономайзеры (рис. 13-13). В биметаллических экономайзерах очень важно обеспечить высокую плотность контакта на границе чугун — сталь. Известно несколько методов технологии изготовления биметаллических элементов. Положительные результаты дает способ, предусматривающий отдельное изготовление чугунных оболочек длиной около 200 мм с последующей горячей посадкой их на стальную трубу. В некоторых конструкциях для уменьшения теплового сопротивления переходного слоя чугунную оболочку устанавливают на теплопроводной мастике. Ребристые биметаллические экономайзеры целесообразны для парогенераторов, работающих на многозольном топливе, особенно с высокоабразивной золой.

где К — постоянная кривизны. Для промышленных биметаллических элементов К = (10—20)Х106, °С~1, поэтому отклонение биметаллического элемента толщиной 1 мм, длиной 50 мм при изменении температуры от 20 до 100 °С составляет 2—4 мм (рис. 3.6). В отличие от этого у

Рис. 3.6. Сравнение характеристик биметаллических элементов и элементов с эффектом памяти формы: 1 — сплав с эффектом памяти формы; 2 — биметалл

Рабочий ход температурных переключателей с памятью формы достаточно велик, поэтому отпадает необходимость использовать храповой механизм, как при использовании биметаллических элементов. Преимуществом элементов памяти формы являются и малые размерь!. Кроме того, так как элементы действуют в зависимости от температуры, то их характерной особенностью является интегральный эффект относительно пиковых токов.

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагруженного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподоб-ных дефектов на стадиях инициации разрушения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.

В качестве плакирующего слоя или покрытия используют высоколегированные стали или дефицитные металлы, обеспечивающие необходимые физико-химические и механические свойства поверхности. Так как толщины металлических покрытий и плакирующих слоев незначительны и не превышают 1—2 мм, использование биметаллических материалов позволяет сэкономить высоколегированные стали и дефицитные цветные металлы.

В Лаборатории высокотемпературной металлографии Института машиноведения разработана методика применения телевизионных анализаторов изображения типа «Quantimet» и «РМС» для исследования особенностей пластической деформации и разрушения биметаллических материалов. Использование этой методики позволило с большой точностью производить подсчет числа полос скольжения, возникающих на поверхности образцов при их нагру-жепии, измерять длину возникшей усталостной трещины и площадь пластической деформации, развивающейся в ее вершине, а также исследовать процессы диффузии элементов через границу раздела слоев биметалла и производить измерение отпечатков ин-дентора при исследовании микротвердости [1]. Все указанные измерения проводились на образцах после их извлечения из рабочих камер испытательных установок.

2. А. И. Танинов, В. Д. Катихин, О. В. Букатин и др. Строение и свойства биметаллических материалов. М., «Наука», 1975.

Применение установки ИМАШ-10-68 и методов высокотемпературной металлографии при изучении процессов, которые протекают в материалах, подвергаемых нагреву при циклическом знакопеременном нагружении, весьма перспективно для получения детальных сведений о деформации и разрушении от усталости. Использование описанной выше аппаратуры позволило, в частности, изучить механизм деформации никеля при малоцикловом нагружении в области повышенных температур [48, с. 120—126; 61], процессы высокотемпературного деформационного старения при циклическом нагружении малоуглеродистой стали 22К [50, с. 58—61 ] и аустенит-ной стали Х18Н10Т, а также провести микроструктурное исследование особенностей деформации и разрушения некоторых биметаллических материалов при высокочастотном нагружении в условиях повышенных температур [49, с. 85—92; 50, с. 87—94].

Свойства биметаллических материалов, изготовленных различными методами, в том числе сваркой взрывом, и их поведение в процессе деформации при комнатной и повышенных температурах были исследованы в работе [101]. Исследованием выявлена высокая работоспособность композиций в широком интервале температур. Опыты с применением методов высоко- 215

101. Строение и свойства биметаллических материалов М., «Наука». 1975, 124 с. с ил. Авт.: А. И. Т а н а н о в, В. Д. К а т и х и н, И. С. Г у з ь и др.

2. Прочность соединения биметаллических материалов при импульсном нагружении

Сложность анализа волновой картины в композитных материалах, в отличие от гомогенных, заключается в том, что на границе сцепления слоев при прохождении ударных волн появляются отражения, обусловленные различной динамической жесткостью pD материалов, из которых состоит исследуемый образец [121] (р — плотность, D — скорость распространения ударной волны). В связи с этим возникает вопрос о выборе схемы нагружения, удобной для анализа и расчета. С этой целью были проведены испытания на прочность сцепления при импульсных нагрузках слоев биметаллических материалов.

2. Прочность соединения биметаллических материалов при импульсном нагружении...............225

2) из биметаллических материалов.

Рис. 1, Образцы биметаллических материалов




Рекомендуем ознакомиться:
Барабанных парогенераторов
Большинства химических
Большинства известных
Большинства материалов
Большинства минеральных
Большинства практически
Большинства соединений
Большинства установок
Большинстве исследований
Большинстве практических
Большинстве установок
Барабанов коллекторов
Большинство легирующих
Большинство параметров
Большинство практически
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки