Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Двигателях внутреннего



Двигатели, используемые в технике, работают на самых разных рабочих телах — от воды до гелия; в каждом случае разработчики этих машин, стремясь повысить КПД, выбирают как процессы, так и наиболее подходящие рабочие тела. Как известно, эти тела вопреки Муслину меняют в цикле свои свойства. Но при всем том перейти предел, установленный Карно для идеального цикла, нельзя, можно только к нему приблизиться. Этим и занимаются настоящие энергетики. Они не устанавливают никаких принципиальных запретов на свойства рабочего тела. Все диктуется целесообразностью. Если в рабочем теле происходят обратимые химические реакции и это повышает КПД — пожалуйста! Принцип Карно, повторяем, разрешает использовать любое рабочее тело (чистое вещество, смесь, раствор, что угодно). Поэтому утверждение, что «на этот случай теорема Карно не распространяется», не имеет никакого разумного обоснования. Использование химических реакций в рабочем теле может быть полезным, в частности, и в двигателях Стирлинга'. Однако никакого «КПД выше КПД цикла Карно» нет и не будет.

Представители руководящих кругов исследовательских организаций и промышленности, профессора и преподаватели технических дисциплин благодаря занимаемому ими положению могли бы оказать большое влияние на завтрашних инженеров и техников, и поэтому им также следовало бы больше знать о двигателях Стирлинга. Настоящая книга рассчитана и на эти группы читателей. Она построена так, чтобы облегчить понимание основных особенностей работы и конструкции двигателя Стирлинга. Книга дает ответы на вопросы: как устроен двигатель Стирлинга, как он работает, где он может использоваться и т. д.—уже в начале изложения материала (гл. 1). Мы надеемся, что, прочитав эту главу, инженерно-технические работники будут более отчетливо представлять потенциальные возможности двигателя Стирлинга в области преобразования энергии и более внимательно отнесутся к перспективам его использования.

Цель книги — дать общее представление о двигателях Стирлинга. Она предназначена для специалистов — инженеров и работников промышленности, заинтересованных в приобретении более глубоких знаний по этому вопросу и в то же время не имеющих возможности тратить усилия и время на выискивание нужных сведений в многочисленных публикациях и на изучение пространных докладов и отчетов. В соответствии с нашими намерениями, изложенными в предисловии, настоящая глава включает краткое предварительное изложение основных вопросов; в последующих главах эти вопросы рассматриваются более подробно, описывается практическое применение двигателей Стирлинга и дается характеристика современного состояния конструкторских и исследовательских работ. Там, где это необходимо, выделяются основные тезисы, которые располагаются, как правило, в начале каждой главы или раздела. В разд. 1.2 дается перечень основных принципов работы и отличительных особенностей двигателя Стирлинга. Этот перечень связан ссылками с остальной частью книги, что дает возможность читателю изучать ее в выбранной им последовательности. В литературе, посвященной двигателям Стирлинга, читатель не найдет ни устоявшейся терминологии, ни стандартных обозначений. Лишь некоторые авторы пытались упорядочить применение определений и символов; нам известна по крайней мере одна такая попытка, предпринятая Уокером [1]. Поэтому там, где это возможно, мы использовали общепринятую в настоящее время терминологию или по крайней мере не противоречащую ей. В тех случаях, где предлагаемая терминология могла бы вызвать неоднозначное толкование, для облегчения понимания дается пояснение терминов. Перечень предлагаемых терминов и определений приведен в приложении В.

В двигателях Стирлинга применяются регенеративные теплообменники (регенераторы), размещенные в каналах, по которым газ перемещается между горячей и холодной зонами двигательной установки. Функцией регенератора является попеременное накопление и возвращение части тепловой энергии, полученной в рабочем цикле двигателя. Передача энергии пульсирующему газовому потоку должна происходить таким образом, чтобы свести к минимуму подвод тепла к установке и в

И наконец, в двигателях Стирлинга большого литража возникает проблема уплотнений, отделяющих цилиндры двигателя от картера и изолирующих картер от избыточного давления. Таким образом, мы перечислили основные факторы, влияющие на выбор механизма привода двигателя Стирлинга.

В двигателях Стирлинга чаще всего используются: криво-шипно-балансирный механизм, ромбический привод, косая шайба и кривошипно-шатунный механизм.

Косая шайба (рис. 1.19) применяется главным образом в двигателях, предназначенных для установки на автомобилях, где решающим фактором является компактность силового агрегата. Такой механизм динамически сбалансирован при определенном угле наклона шайбы. Он также позволяет легко изолировать цилиндры от картера. Однако в случае установки двигателя на автомобиль возникает проблема надежности уплотнений в условиях быстрой смены большого количества циклов. Косая шайба позволяет также управлять мощностью двигателя изменением угла наклона шайбы, что ведет в свою очередь к изменению величины хода поршней двигателя. В этом случае двигатель динамически сбалансирован только при одном значении угла наклона шайбы. Кривошипно-шатунный механизм (рис. 1.20) в течение многих лет используется в двигателях внутреннего сгорания. Он исключительно надежен, и к настоящему времени накоплен большой опыт его эксплуатации. Этот механизм широко применяется в двигателях Стирлинга двойного действия как с крейцкопфом, так и без него. Преимуществами механизма являются его надежность и простота изготовления, однако динамическая балансировка двигателя с таким механизмом привода практически недостижима.

связи между поршнями. В этом случае рабочий и вытеснитель-ный поршни называются свободными поршнями. Эта концепция может быть использована не только в двигателях Стирлинга, однако только применительно к таким двигателям ее удалось успешно реализовать. Впервые ее воплотил в реально

Рис. 1.27. Механизмы привода, применяемые в двигателях Стирлинга.

В двигателях Стирлинга, рассмотренных выше, использовалось газообразное рабочее тело; даже в «мокром» «Флюидайне» рабочее тело в подавляющем большинстве случаев газообразное. В настоящее время выдвигают предложения по использованию рабочих тел с изменяющимся фазовым состоянием, например таких, которые применяют в паровых машинах и паровых турбинах, однако пока нет сведений о том, что такие устройства успешно работают или по крайней мере разработаны. Английский инженер Мелоун еще ,в 30-е годы построил двигатель возвратно-поступательного действия с замкнутым циклом, используя в качестве рабочего тела жидкость [14]. Уокер [7] предполагает, что двигатель Мелоуна в действительности является двигателем Стирлинга, и единственная публикация Мелоуна как будто бы дает дополнительные основания

9. В двигателях Стирлинга можно использовать источники энергии, не производящие никаких загрязняющих атмосферу выбросов. Даже при использовании природных топлив присущий этим двигателям устойчивый процесс горения позволяет значительно понизить уровень концентрации токсичных веществ, выбрасываемых в атмосферу, по сравнению с уровнями концентрации таких веществ,, выбрасываемых другими двигателями, при условии, что предусмотрены специальные меры для снижения температуры ниже порога образования окислов азота. Автомобильный двигатель Стирлинга является в настоящее время •единственной энергосиловой установкой, удовлетворяющей жестким стандартам штата Калифорния по допустимым уровням содержания токсичных веществ в автомобильных выбросах, намеченным к введению в 1985 г.

Поскольку величина 6/ пропорциональна увеличению объема, то в качестве рабочих тел, предназначенных для преобразования тепловой энергии в механическую, целесообразно выбирать такие, которые обладают способностью значительно увеличивать свой объем. Этим качеством обладают газы и пары жидкостей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внутреннего сгорания — газообразные продукты сгорания того или иного топлива.

Закон Дальтона. В инженерной практике часто приходится иметь дело с газообразными веществами, близкими по свойствам к идеальным газам и представляющими собой механическую смесь отдельных компонентов различных газов, химически не реагирующих между собой. Это так называемые газовые смеси. В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и паровых котлов, влажный воздух в сушильных установках и т. п.

Ребра, имеющие форму пластин, стержней или любую другую, одним концом плотно прикрепляют к теплоотдаю-щей поверхности с помощью сварки, пайки или изготовляют как целое со стенкой. Ребристыми выполняют радиаторы отопления, корпуса двигателей и редукторов, радиаторы для охлаждения воды в двигателях внутреннего сгорания и т. д.

Предварительно подготовленную смесь сжигают в карбюраторных двигателях внутреннего сгорания, где горение должно завершиться за ничтожно малое время. В промышленных топках и печах такой большой скорости сгорания обычно не требуется. В то же время подготовленная смесь чрезвычайно взрывоопасна. Она может взорваться от электрической искры (как в цилиндре карбюраторных ДВС), при проскоке пламени через горелку из топки и просто при нагреве до определенной температуры,

Например, в двигателях внутреннего сгорания регулирование зазоров в клапанном механизме можно устранить введением автоматических компенсаторов износа и тепловых расширений (гидравлического или иного типа). Это не только упрощает уход; обеспечивая практически беззазорную работу клапанного механизма, компенсаторы вместе е тем существенно повышают его долговечность.

В двигателях внутреннего сгорания с отъемным блоком цилиндров восприятие сил вспышек возможно тремя основными способами: по схеме несущих шпилек 5, притягивающих блок к картеру (рис. 63,в\ по схеме несущих рубашек, притягиваемых к картеру шпильками б (рис. 63, г), по схеме несущих цилиндров, притягиваемых к картеру гайками 7 (рис. 63,3).

Для некоторых категорий машин, работающих на жидкостях или газах (гидравлические прессы, воздушные и паровоздушные молоты, пневматические и гидравлические приводы), значительного уменьшения размеров и массы можно добиться увеличением да'вления рабочей жидкости (газа). До известного предела можно повысить рабочее давление газов в двигателях внутреннего сгорания (применением наддува и повышением степени сжатия), что позволяет уменьшить рабочий объем цилиндров или при заданном рабочем объеме повысить: мощность. -

Возьмем такой хорошо изученный механизм, как шатунно-кривошипный. В двигателях внутреннего сгорания исходной величиной для расчета на прочность являются максимальные силы давления рабочих газов на поршень. Казалось бы, что в определении этих сил не может быть ошибки. В действительности .величины этих сил и вызываемых ими напряжений в звеньях механизма зависят от многих факторов, прежде всего от упругости и массы звеньев.

тельное, качательное или наоборот), осуществления движений с заданным законом изменения скорости и движения со сложной траекторией применяют ш а р-н и р н о - р ы ч а ж н ы е и к у л а ч к о в ы с механизмы. Наибольшее применение из шарнирно-рычажных механизмов имеет, как известно, кривошипно-подзунный механизм, используемый во всех поршневых машинах: двигателях внутреннего сгорания, насосах. Основные детали шарнирно-рычажных механизмов: кривошипы, шатуны, коромысла, направляющие, кулисы, ползуны. Основные детали кулачковых механизмов: кулачки, эксцентрики, ролики.

В автомобильных двигателях внутреннего сгорания, где поршневые кольца и стенки цилиндров постоянно корродируют под действием газообразных продуктов сгорания и конденсатов, потери от увеличения потребления бензина и масла сравнимы с потерями от механического износа, а иногда и превышают их. Потенциальные потери этого типа в системах преобразования энергии оцениваются в несколько миллиардов долларов в год [9, 10].

Сплавы, содержащие 4—9 % Сг, широко используются в нефтеперерабатывающей промышленности в качестве стойких к окислению материалов. Сплав 12 % Сг—Fe благодаря высокой стойкости и хорошим физическим свойствам используют для изготовления лопастей паровых турбин. Из сплавов с 9—30 % Сг изготовляют горелки и некоторые элементы печей, а в сочетании с Si, Ni, а иногда и другими легирующими добавками, они служат для изготовления клапанов в двигателях внутреннего сгорания. Ниже приведены приблизительные верхние температурные пределы применения сплавов Сг—Fe на воздухе:




Рекомендуем ознакомиться:
Двигателя приводящего
Двигателя соответственно
Двигателя стирлинга
Двигателя возникает
Двигателя увеличение
Двигателей используются
Двигателей космических
Двигателей осуществляется
Двигателей приведены
Дополнительные исследования
Двигателей воздушного
Двигателем стирлинга
Двигатели двигатели
Двигатели переменного
Двигатели стирлинга
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки