Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Гранулированных композитов



где q2S — удельный тепловой поток через граничную поверхность; Т — температура точек поверхности тела; Тс — температура среды.

Образование границ зерен — структурное превращение, присущее литому металлу (сварному шву, отливке) в период завершения его кристаллизации из жидкого расплава. Границы образуются непосредственно при срастании первичных кристаллитов. Поскольку кристаллические решетки кристаллитов ориентированы произвольно, то их сопряжение при срастании кристаллитов сопровождается существенными искажениями решеток. Эти искажения и приводят к образованию граничной поверхности. Существует также мнение, что границы образуются путем собирания дислокаций, неупорядоченно расположенных в металле после затвердевания в одну граничную поверхность в результате процесса полигонизации, однако более обоснован первый механизм образования границ. Современные представления о строении границ сводятся к тому, что на границах чередуются участки хорошего и плохого соответствия кристаллических решеток соседних зерен. Это так называемые «островные» модели границ зерен. Строение и протяженность участков плохого соответствия зависят от угла разориентировки решеток смежных кристаллитов. Различают малоугловые (угол до 15°) и большеугловые (угол свыше 15°) границы. Малоугловые границы описывают как ряд отдельных дислокаций (рис. 13.9,а). Расстояние между ними D определяется соотношением

больше характерного линейного размера системы. Фотоны, испускаемые средой, попадают непосредственно на граничную поверхность без промежуточных соударений, без лучистого взаимодействия. Такой режим

Из уравнения (5-21) видно, что с ростом спектральной оптической толщины слоя ov/ суммарная спектральная интенсивность излучения с поверхности /v(0 растет и при av />3 практически достигает спектральной интенсивности излучения абсолютно черного тела /ov при температуре, равной температуре газа в объеме. Вне полос спектра поглощения газа величина а, — 0; из соотношения (5-21) следует, что в этих участках спектра излучение газового объема отсутствует. Выражение (5-21) определяет интенсивность излучения по направлению нормали к поверхности плоского слоя. Плотность полусферического излучения с поверхности Ev можно найти, если рассмотреть также иные направления, по которым излучение пересекает граничную поверхность. Выражение для интенсивности излучения в произвольном направлении п (рис. 5-21) определяется тем же уравнением (5-21), если в нем толщину слоя газа / заменить на длину пути луча в этом направлении /„ — J/cosO. Если подставить это соотношение в (в), то после вычислений получим:

излучения с поверхнотси Jv (l) растет и при Оу1>3 практически достигает спектральной интенсивности излучения абсолютно черного тела /ov ПРИ температуре, равной температуре газа в объеме. Вне полос спектра поглощения газа величина av = 0; из соотношения (5-21) следует, что в этих участках спектра излучение газового объема отсутствует. Выражение (5-21) определяет интенсивность излучения по направлению нормали к поверхности плоского слоя. Плотность потока полусферического излучения с поверхности Ev можно найти, если рассмотреть также другие направления, по которым излучение пересекает граничную поверхность. Выражение для интенсивности излучения в произвольном направлении

На практике встречаются два различных определения эффективных модулей. Их можно назвать «математическим» и «физическим» определениями. Первое из них, рассмотренное выше, основывается на уравнениях (5) и условиях (1), (2) или (7), (8) и использует соотношения между усредненными по объему компонентами тензоров напряжений и деформаций. Второе связывает значения компонент тензоров напряжений и деформаций, усредненные по некоторым участкам поверхности, т. е. величины, которые можно стандартным образом найти из эксперимента. Для того чтобы сравнить эти определения, заметим прежде всего, что некоторые компоненты тензоров напряжений и деформаций на граничной поверхности 5 определяются граничными условиями (1) и (2). Рассмотрим, например, граничную поверхность х\ — const. Если задано условие (1), то

Связь термического и электрического контактных сопротивлений с неровностями поверхности. Термическое и электрическое контактные сопротивления можно рассматривать совместно, поскольку между электропроводностью металлов и их теплопроводностью существует тесная физическая связь, а явления, протекающие на указанных двух видах контактов, в ряде случаев могут быть одинаково математически описаны [3, 13]. Контактирующие тела благодаря неровностям поверхности имеют лишь дискретные точки фактического соприкосновения, группирующиеся в ограниченных районах номинальной поверхности контакта. И когда тепловой поток (или электрический ток) встречает в вакууме контактную поверхность, разграничивающую два тела, по нормали к ней, то тепловая энергия стягивается в уплотненные линии для того, чтобы пройти через микроконтакты. Сопротивление такого типа при протекании теплового потока через граничную поверхность называют стягивающим контактным сопротивлением. Очевидно, что величина данного сопротивления определяется величиной и формой неровностей контактирующих поверхностей.

Но если среда имеет граничную поверхность, то по поверхности могут распространяться волны третьего типа, называемые волнами Редея. Эти волны распространяются главным образом по поверхности, проникая внутрь тела лишь на небольшую глубину. Скорость распространения поверхностных волн с3 меньше скоростей волн расширения и сдвига и, как можно показать, зависит только от упругих постоянных материала.

При переходе через граничную поверхность S функция U и её первые производные непрерывны.

где 9-1^(s',n,) — угол падения луча на граничную поверхность в рассматриваемой точке N, (п,=—п),

Однако, несмотря «а сделанные упрощения, решение (13-8) IB общем виде встречает 'существенные затруднения, в ювязи ic чем для (получения аналитического решения и анализа закономерностей исследуемого процесса приходится сделать ряд дополнительных допущений. Бу? дем считать среду и граничную поверхность серыми излучателями с идеально диффузными '(изотропными) индикатрисами объемного ,и поверхностного рассеяния и постоянным (показателем преломления п. В отношении геометрической формы канала и толя скоростей сделаем следующие допущения. Будем рассчитывать канал 'произвольного, во постоянного по длине сечения, (причем ось х совпадает с геометрической осью канала, а ее начало совмещено с плоскостью 'входного сечения. Линии тока движущейся по каналу среды параллельны оси х, т. е. Wy=wz=-Q, wx=w.

А. Границы эффективных модулей для гранулированных композитов ........................ 81

Для частного случая фаз с равными модулями сдвига получены точные значения модуля объемного сжатия для гранулированных композитов и модуля объемного сжатия, соответствующего дилатации в плоскости, перпендикулярной волокнам, для волокнистых композитов при произвольной геометрии фаз. Эти результаты приведены в разд. II, В. Если задаться геометрией фаз, то можно установить микроскопическое распределение напряжений. Так, получено точное решение для поперечных микронапряжений в волокнистых композитах, моделируемых произвольной укладкой круговых включений в неограниченной матрице.

Статистические методы нахождения эффективных модулейг предлагаются в разд. VI. При этом приводится подробный вывод основных уравнений и указываются приближения, при которых можно решить эти уравнения. Выписываются и обсуждаются результаты для гранулированных композитов. Для волокнистых композитов подобные результаты не приводятся из-за их сложности и громоздкости.

Модели, предлагаемые для определения коэффициентов концентрации средних напряжений и деформаций, а следовательно, и эффективных модулей волокнистых композитов, по существу, таковы же, как для гранулированных композитов. Однако анализ таких композитов сложнее, ибо они имеют большее число эффективных упругих модулей (предполагается трансверсальная анизотропия). Поэтому здесь приводятся только окончательные результаты исследований. Ради удобства эффективные модули .снабжаются индексами L и Т. Индекс L относится к модулю Юнга вдоль волокон, а индекс Т к модулю поперек волокон. Индексы модуля сдвига ji определяют плоскость, в которой происходит сдвиг. Например, цтт — эффективный модуль сдвига для деформаций в плоскости, перпендикулярной волокнам. Величина v*LJ (v^T) — отрицательное отношение поперечной деформации к продольной при растяжении в продольном (поперечном) направлении. (Некоторые авторы дают разные определения величины v?T, поэтому читателю надо быть осторожным.) Коэффициенты Пуассона v*T, VJL и модули Юнга; связаны соотношением

Можно сразу отбросить некоторые неподходящие оценки, получив границы для значений эффективных модулей при помощи вариационных принципов. Для гранулированных композитов такие границы будут найдены в разд. IV, А, а для волокнистых композитов — в разд. IV, Б.

А. Границы эффективных модулей для гранулированных композитов

Следует заметить, что уравнение (125в) непосредственно приводится к виду, данному Хашином [46] для модулей сдвига гранулированных композитов с малым затуханием в случае, когда одна фаза является вязкоупругой, а другая упругой.

Нильсен и Ли [74] объясняли расхождение теоретических и экспериментальных результатов для тангенсов углов потерь гранулированных композитов наличием внутреннего трения между частицами в агломератах, между матрицей и включениями и трением между краями трещин внутри полимера. В этой же работе отмечено влияние внешней поверхности полимера на комплексные модули, определяемые из опытов на кручение и изгиб, и дан простой метод корректировки их значений.

Нелинейное поведение волокнистых пластиков и гранулированных эластомеров, вызванное микроструктурными повреждениями, качественно похожи (см. Халпин [39]). Интересно, например, заметить, что в композитах обоих видов обнаруживается значительно большее затухание, чем предсказывает линейная теория, при относительно низких вибрационных напряжениях (ср., например, Нильсен и Ли [74], Шепери и Канти [96], Шульц и Цай [101]). У волокнистых пластиков многие повреждения проявляются в виде четко выраженных трещин. Тем не менее количественных соотношений, выражающих зависимость между микроструктурным строением и поведением материала с течением времени, для волокнистых пластиков имеется гораздо меньше, чем для гранулированных композитов.

Трехмерная теория для гранулированных композитов также предложена Феррисом [27]; она подтверждается немногочисленными пока экспериментами [28], Кроме того, Шепери [92, 94] использовал неравновесную термодинамику и механику разрушения, чтобы получить трехмерное представление, включающее ^эффекты и обратимой нелинейности, и микроструктурных повреждений. Однако последняя теория с двумя типами нелинейности и с наличием или с отсутствием обусловленной пустотами дилатации пока еще не проверена и непригодна для практического применения. Более того, справедливость аналогичной теории (Шепери и др. [98]) для волокнистых пластиков не доказана; в настоящее время необходима хорошо продуманная программа одномерных и многомерных опытов для оценки существующих теорий.

Теория Ферриса для гранулированных композитов была использована при решении плоских задач методом конечных элементов [28]. Однако теории, описывающей нелинейное поведение вязкоупругих волокнистых композитов, по-видимому, не




Рекомендуем ознакомиться:
Газомазутных водогрейных
Газообразные соединения
Газообразных составляющих
Газообразным водородом
Газоохлаждаемых реакторах
Газопаровых установок
Газопламенной обработке
Газопромыслового оборудования
Газотермического напыления
Газотурбинных агрегатов
Галогенных счетчиков
Газотурбинной электростанции
Гексагональная кубическая
Гексагональной структурой
Генерации дислокаций
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки