Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Изотермическом превращении



Как видно из уравнений (2.5.4), для построения функций напряжений и температуры необходимо определение производных or функций, характеризующих диаграммы деформирования при изотермическом нагружении. Для более точной постановки задачи требуется проведение дополнительного эксперимента с целью построения зависимости деформации от температуры при постоянном напряжении.

На рис. 26 приведены результаты обеих серий испытаний.. Каждая диаграмма деформирования (сплошные линии) построена по результатам испытания трех образцов при постоянной температуре. Экспериментальные точки при изотермическом нагружении на диаграммах не показаны. Результаты испытаний при неизотермическом нагружении с возрастающей нагрузкой и снижающейся температурой (девять образцов) приведены на рис. 26 в виде экспериментальных точек. Соответствующие значения меняющейся температуры также указаны на рисунке.

Как видно из этих данных, в упругой области деформирования точки, полученные при неизотермическом нагружении, достаточно близки к кривым, полученным при соответствующем значении постоянной температуры. Различие деформаций при

Для выявления влияния неизотермичности в последующих режимах испытания возможность развития значительных деформаций ползучести была исключена соответствующим выбором процесса нагружения и нагрева. Характер деформирования при переходе с диаграммы /=800° С на диаграмму ^=500° С (режим 2), когда деформации ползучести отсутствовали, остается таким же. Кривая 3 (см. рис. 28) располагается значительно' выше исходной диаграммы ?=500° С, построенной при изотермическом нагружении, т. е. находится вне поверхности деформирования. Уменьшение остаточной деформации здесь также существенно, хотя и не такое значительное, как лри испытании no-режиму 1. Результаты не изменяются принципиально от того, осуществляется ли переход однократно (режим 2) или повторно (режим 4), но уменьшение остаточной пластичности непосредственно зависит от величины предварительной деформации ео-Итоговая кривая деформирования .и ее конечная точка располагаются вне поверхности нагружения.

Таким образом, в цикле термонатружения возникают самые различные виды повреждений — от повторного статического холодного деформирования до усталостного и ползучести; поэтому процессы циклического упрочнения или разупрочнения при термическом нагружении отличаются от таковых при изотермическом нагружении.

Жесткое нагружение, по-видимому, отражает наиболее тяжелые условия работы материала в детали, в частности для упрочняющегося материала. При изотермическом нагружении в качестве одного из критериев прочности циклически упрочняющегося материала принимают предельное значение напряжения, увеличивающегося с числом циклов [61]. Как показано, при неизотермическом нагружении, вследствие возможного чередования процессов упрочнения и разупрочнения использование этого критерия теряет смысл.

Асимметрия цикла по напряжениям при существенно различных значениях температуры имеет иной смысл, чем асимметрия лри постоянной температуре, так как в первом случае большим значениям напряжений в цикле соответствуют меньшие значения температуры, и наоборот; влияние такого вида асимметрии на долговечность отличается от такового при изотермическом нагружении.

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выдержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. гл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав: 1=750°С; д=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов ?н = — &"?=

Уравнение для описания процесса циклической релаксации при изотермическом нагружении сталей 304 и 316, аналогичное уравнению (4.4), получено Кон-вэем в виде

Расчет Ле и енак в уравнении (5.28) существенно упрощается, если справедливо предположение о наличии единой поверхности деформирования. При малоцикловом изотермическом нагружении это обстоятельство достаточно обосновано; имеются также данные о возможности подобного подхода и при неизотермическом малоцикловом натружении [12, 18].

Одним из главных вопросов при использовании деформационных критериев как при неизотермическом, так и при изотермическом нагружении является выбор предельной пластичности. Пластичность материала в большой степени зависит от предыстории нагружения и нагрева. Кроме того, как указывалось, она немонотонно изменяется в температурном диапазоне *mia—4nax. Для нахождения предельного состояния при термоциклическом нагружении целесообразно определить главные факторы, влияющие на пластичность, и ввести эти факторы в соответствующие предельные уравнения. Пластические свойства материала определяют при максимальной температуре цикла и учитывают уменьшение пластичности в течение времени нагружения.

По этой диаграмме основные сведения об изотермическом превращении можно получить для данной стали при любой степени переохлаждения. "Г" "I—'1Z" Например, при переох-

1 В свое время данные об изотермической кинетике мартенситного превращения стремились распространить на все виды мартенситного превращения. Острая полемика и путаница представлений характеризует этот период (50-е годы). Кинетика образования и морфология, а вероятно, и свойства изотермического и атермического мартенсита различны и их следует рассматривать раздельно. Теория и основные сведения о кинетике атермического превращения даны С. С. Штейнбергом (30-е годы) о изотермическом превращении— Г. В. Курдюмовым• (конец 40-х и начала' 50-х годов).

превращения, что и при изотермическом превращении.

При изотермическом превращении у доэвтектоидных сталей из аустенита выделяется феррит (рис. 8.10), а у заэвтектоидных сталей — цементит.

Мартенсит может образовываться и при изотермическом превращении аустенита. Так у сталей с мартенситной точкой ниже 100° С количество мартенсита может достигать десятков процентов.

При изотермическом превращении может наблюдаться инкубационный период; при этом мартенситная точка не определяет температуру начала превращения при охлаждении, поскольку положение этой точки зависит от скорости охлаждения. Для определенных сталей она является температурой, ниже которой при достаточно длительной выдержке может протекать превращение.

При изотермическом превращении в условиях средних температур происходит рост отдельных кристаллов в продольном и поперечном направлениях, однако скорости роста значительно ниже, чем при мартенситном превращении. Возникновение рельефа на полированной поверхности шлифа указывает на то, что а-фаза когерентно связана с аустенитом, а переход у-*-а происходит вследствие упорядоченного перераспределения атомов подобно мартенситному превращению.

Экстремум на диаграмме конструктивной прочности был обнаружен также и при изотермическом превращении аустенита в интервале температур 250—450°С (рис. 8.17). Наибольшие значеция^вяз-кости разрушения стали со структурой бейнита соответствуют температуре распада переохлажденного аустенита, равной 350°С. Снижение температуры распада до 250°С ведет к росту предела текучести и уменьшению значений вязкости разрушения. Это связано главным образом с увеличением содержания углерода в а-фазе и увеличением степени блокировки дислокаций внедренными атомами углерода. Уменьшение пластичности ферритной матрицы затрудняет протекание релаксационных процессов в вершине трещины и увеличивает скорость ее распространения, снижая тем самым сопротивление стали хрупкому разрушению. Сложный характер диаграммы конструктивной прочности объясняется не только влиянием структурных изменений в бейните при варьировании температурой распада аустенита, но и сменой морфологии бейнита, т. е. переходом от нижнего бейнита к верхнему. При температурах образова-

Еще одним способом аккумулирования теплоты является использование различий в физическом состоянии вещества, заключающихся во внешнем воздействии на вещество с целью вызвать его переход из твердой фазы в жидкую или из жидкой в парообразную. При подобном изотермическом превращении состояния вещества либо поглощается, либо выделяется определенное количество теплоты в зависимости от того, в каком направлении оно происходит. Такая теплота называется скрытой теплотой фазового превращения. Некоторые специфические формы изменения состояния вещества, такие как плавление, конденсация, испарение и т. п., также связаны с поглощением или выделением теплоты. Для большинства химически чистых веществ их преобразование не связано со значительным выделением (или поглощением) теплоты. .

П. Основной причиной аллотропического превращения является стремление сплава обладать минимумом свободной энергии, следовательно, чем ниже температура переохлажденного аустенита при изотермическом превращении, тем сильнее окажется его склонность к распаду.

По этой диаграмме основные сведения об изотермическом превращении можно получить для данной стали при любой степени переохлаждения. Например, при переохлаждении до 650°С превращение начинается через некоторое время выделением из раствора феррита. Феррит выделяется в течение определенного времени, после чего начинается распад аустенита на перлит, который заканчивается на кривой, характеризующей конец превращения. Если быстро охладить аустенит до 550°С, то превращение начнется прямо с образования перлита. Превращение при 550°С протекает значительно скорее, чем при 650°С.




Рекомендуем ознакомиться:
Измерений температуры
Измерениях используют
Измерения электрической
Исследования предельных
Измерения атмосферного
Измерения динамического
Измерения импеданса
Измерения используется
Измерения коэффициента
Измерения концентраций
Измерения локальных
Измерения механических
Измерения напряжения
Измерения нормальных
Исследования прочности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки