Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Излучательной способностью



Выделение энергии при межзонной рекомбинации может происходить или в форме кванта света hv, или в виде тепла (фононов). В первом случае рекомбинацию называют излучательной, во втором случае — безызлучательной. Как показывает расчет и эксперимент, межзонная излучательная рекомбинация может иметь существенное значение для полупроводников с узкой запрещенной зоной яри относительно высоких температурах (комнатной и выше). Для полупроводников же с широкой запрещенной зоной основным механизмом, ответственным за рекомбинацию, является безызлуча-тельная рекомбинация через примесные уровни. Однако при некоторых условиях и в таких полупроводниках можно достичь относительно высокого уровня излучательной рекомбинации. Как видно из (6.47) и (6.50), этому способствует, в частности, повышение концентрации избыточных носителей в полупроводнике и увели-•чение степени его легирования.

В условиях теплового равновесия число актов излучательной рекомбинации равно числу актов поглощения квантов света равновесного теплового излучения. Поэтому полупроводник излучает ровно столько света (и на тех же частотах), сколько поглощает из окружающего пространства.

Из (12.26) следует, что для получения максимальной внутренней эффективности светодиода следует по возможности увеличить отношение вероятности излучательной рекомбинации к безызлуча-тельной. Безызлучательная рекомбинация, как правило, определяется в основном глубокими рекомбинационными центрами, излу-чательная же идет обычно в результате межзонных переходов (рис. 12.11, а), переходов из зоны проводимости на мелкие акцепторные уровни (рис. 12.11, б) или с мелких донорных уровней в валентную зону (рис. 12.11, б). Вероятность безызлучательной рекомбинации можно уменьшить, очистив полупроводник от глубоких рекомбинационных центров. Сделать это очень трудно, так как сечение захвата носителей некоторыми примесными центрами, например медью, велико и требуется очень высокая степень очистки оттаких примесей. Поэтому качество светодиодов в значительной мере зависит от степени очистки исходных материалов и совершенства технологии изготовления диодов.

Другим способом повышения внутреннего квантового выхода диода является увеличение вероятности излучательной рекомбинации путем выбора полупроводникового материала и степени его легирования. В таких полупроводниках, как Si и Ge, у которых дно зоны проводимости и потолок валентной зоны расположены при различных значениях волнового вектора k (рис. 5.4), вероятность межзонной излучательной рекомбинации много меньше, чем у полупроводников с совпадающими экстремумами зон (GaAs, InAs, InSb и-др.). Поэтому для изготовления светодиодов необходимо брать

Стимулированное излучение. Рассматривая процессы возбуждения электронов в полупроводниках под действием света и свечение, которое возникает при излучательной рекомбинации электронно-дырочных пар, мы оставили без внимания важный вопрос б влиянии -самого излучения на переходы возбужденных электронов в нормальные состояния, на особенность излучения, возникающего в этих условиях при таких переходах, ~и возможность их практического использования для усиления и генерации электромагнитных колебаний.

пикающего при излучательной рекомбинации электронно-дырочных пар. Наиболее широкое практическое применение получили инжекционные лазеры на арсениде галлия, в которых инверсная населенность достигается инжекцией неосновных носителей через р — n-переход в вырожденные области полупроводника. Применяются также InAs, InP, InSb и ряд твердых растворов. На рис. 12.20, о показан равновесный р — n-переход между двумя вырожденными областями полупроводника. Уровень Ферми в р-области (fip) располагается ниже вершины валентной зоны Ev, а в n-сбласти (цп)—выше дна зоны проводимости Ес. Такое расположение уровней Ферми свидетельствует о том, что состояния вблизи вершины валентной зоны р-области с вероятностью, близкой к 1, свободны (заполнены дырками), а состояния вблизи дна зоны проводимости «-области с той же степенью вероятности заполнены электронами. Если к такому р— «-переходу приложить прямое смещение V, резко снижающее потенциальный барьер, то в нем появится область А с инверсионным заполнением зон: над практически свободными уровнями валентной зоны располагаются полностью заполненные уровни зоны проводимости (рис. 12.20, 6). В этих условиях спонтанно возникшие кванты вследствие рекомбинации электронно-дырочных пар будут вызывать стимулированное испускание излучения. Этот принцип и положен в основу работы полупроводниковых лазеров, схема устройства которых показана на рис. 12.21. Кристалл с р — «-переходом имеет форму параллелепипеда или неправильной пирамиды: две противоположные грани делаются строго параллельными друг другу и перпендикулярными плоскости р — «-перехода; они выполняют роль оптического резонатора, заставляющего стимулированное излучение, возникшее в плоскости перехода, проходить через него многократно. Две другие грани могут быть направлены под углом к основанию и оставляются грубо обработанными, вследствие чего не могут выполнять роль оптического резонатора. Когерентное излучение выводится через одну из граней оптического резонатора.

диод, испуская спонтанное излучение с равномерной плотностью во всех на-ттравлениях (в телесном угле гк 4 п рад.). Лучи, не попавшие на отражающие грани кристалла, полностью поглощаются в нем. Кроме того, лучи, упавшие на эти грани под углом а > 17°, испытывают полное внутреннее отражение и в конечном счете также поглощаются в кристалле. Поэтому из светодиода выходит всего я=2% излучения, возникшего в нем в результате излучательной .рекомбинации.

При переходе же к режиму генерации практически все излучение концентрируется в плоскости р — n-перехода, распространяясь перпендикулярно отражающим граням. Кроме того, при / > /пор вследствие роста вероятности вынужденных оптических переходов увеличивается отношение вероятностей излучательной и безызлучательной рекомбинации. Все это приводит к резкому росту мощности излучения Wmil и излому кривой зависимости Wi!3J, от тока / при / = /П0р (рис. 12.22).

В качестве активной среды применяются монокрясталлич. полупроводники, причем в этом случае излучение генерируется при рекомбинации носителей (инжектируемых через р — re-переход) через запрещенную зону. Основное требование к таким материалам — большая вероятность излучательной рекомбинации носителей (т. е. малое время жизни по отношению к излучательным переходам). Таким материалом является соединение GaAs, на основе к-рого создан лазер с чрезвычайно эффективным преобразованием электрической энергии в световую.

Транзистор Полевой транзистор Металлооксидный транзистор (МОП) Оптотранзистор Ge.Si Ge, Si Si.Ge GaAs Транзисторный эффект Полевой эффект Полевой эффект Сочетание излучательной рекомбинации и фотоэффекта Два р — п-пе-рехода

Транзистор Полевой транзистор Металлооксидный транзистор (МОП) Оптотранзистор Ge, Si Ge, Si Si, Ge GaAs Транзисторный эффект Полевой эффект Полевой эффект Сочетание излучательной рекомбинации и фотоэффекта Два р — п-пе-рехода

Основной проблемой кремниевой оптоэлектроники является проблема создания эффективного источника излучения, роль которого выполняет светодиод или лазер. Кремний является непрямозонным полупроводником, и эффективность межзонной излучательной рекомбинации в нем очень низка. Определенным выходом из этого положения является легирование кремния эрбием, примесью, которая формирует в кристаллической решетке эффективные центры излучательной рекомбинации с участием 4f электронов примесного атома. В процессе такой рекомбинации генерируется излучение с длиной волны 1,54 мкм, для которого сам кремний практически прозрачен и которое также соответствует окну максимальной прозрачности оптических волноводов из кварцевого стекла. К сожалению, растворимость Ег в Si составляет всего ~1016 см~3 (при 1300 °С). Этого явно недостаточно для получения интенсивного излучения. Для увеличения содержания Ег в кристаллической решетке используют неравновесные методы получения сильнолегированных кремниевых слоев — ионную имплантацию, молекулярно-лучевую эпитаксию, ион-но-лучевое напыление и др. Увеличению содержания Ег в слое способствует и дополнительное его легирование кислородом или фтором, с которыми эрбий образует достаточно стабильные комплексы. На сегод-

Для дуг, горящих в газовой среде (Аг, Не), на тугоплавких катодах (уголь, вольфрам) каналовая модель, как правило, мало подходит. Это обусловлено конической и колоколообразной формой столба дуги и непостоянством температуры по его длине; различной излучательной способностью газов, которая у гелия, например, весьма мала; наличием плазменных струй и т. д.

Исследованы условия осаждения нитрида алюминия из газовой фазы, содержащей1 пар моноаммиаката хлорида алюминия. Обнаружено, что в интервале температур молибденовой подложки 1400—1600К покрытие имеет слоистую структуру. При более низких температурах эффективность пиролиза исходного продукта моноаммиаката недостаточна, а при более высоких исчезает слоистость покрытия. Установлена связь состава покрытия с температурой его осаждения, в частности, в слоистых покрытиях найден избыток алюминия. Термодинамический анализ системы A1-N-H-C1 показал, что вблизи нижнего температурного пределв пиролиза исходного продукта, помимо основной реакции A1C13NH3 = A1N+3HC1, могут идти побочные реакции, в частности, 2(А1С1зНН3) = 2A1+N2+6HC1. В зависимости от колебаний температуры подложки, вклад побочных реакций может усиливаться или ослабляться. Высказано предположение, что в таких условиях небольшие колебания температуры подложки могут быть связаны с изменением степени черноты поверхности подножки и покрытия при неизменной мощности нагревателя. Осаждение керамического покрытия увеличивает степень черноты молибденовой подножки и излуча-тельную способность ее поверхности, а\ стало быть температура поверхности снижается. Это приводит к уменьшению полноты прохождения основной реакции и к усилению вклада побочной реакции, ответственной за появление в осадке свободного алюминия. Это, в свою очередь, снижает излучотельную способность поверхности покрытия, температура которой соответственно возрастает. При этом вклад побочных реакций уменьшается, а выход основной реакции увеличивается, пока снова не образуется слой с высокой излучательной способностью и не начнется новый цикл. Таким образом, в определенна*.-температурном интервале процесс осаждения нитрида алюминия косит автоколебательный характер. В% результате в покрытии появляется самообразующаяся слоистая структура с различным содержанием и слоях свободного алюминия. При более высоких температурах вклад побочных реакций резко уменьшается, выход основного продукта пт. релиза нитрида алюминия возрастает, тем самым устраняется причина термопульсаций, и слоистая структура в покрытии не возникает,

В большинстве топок, за исключением топок циклонного или вихревого типа, передача теплоты рабочему телу, движущемуся в трубах, осуществляется благодаря лучистому отводу теплоты т высокотемпературных продуктов сгорания к поверхностям экранов. Ввиду малой скорости продуктов сгорания в радиационном газоходе конвективной составляющей теплового потока обычно пренебрегают. Излучательная способность факела в основном определяется составом продуктов сгорания и температурным уровнем процесса горения. Наибольшей излучательной способностью обладает пламя мазутного факела. На начальной стадии процесса горения мазута наблюдается образование большого количества частиц сажи. Обычно такой факел называют светящимся. Наименьшее излучение у факела, состоящего из трехатомных газов С02 и Н2О, получаемого при сжигании газа. Такой факел называют несветящимся.

Тепловое излучение различных тел определяется их тепловым состоянием, а также природными свойствами. Температура резко влияет на лучеиспускательную способность тел, т. е. на количество энергии, излучаемой единицей поверхности тела за единицу времени. Тело, обладающее при данной температуре наибольшей излучательной способностью, называется абсолютно черным телом. Таких тел в природе не существует и все реальные тела излучают при одной и той же температуре только часть энергии абсолютно черного тела.

В большинстве топок, за исключением топок циклонного или вихревого типа, передача теплоты рабочему телу, движущемуся в трубах, осуществляется благодаря лучистому отводу теплоты от высокотемпературных продуктов сгорания к поверхностям экранов. Ввиду малой скорости продуктов сгорания в радиационном газоходе конвективной составляющей теплового потока обычно пренебрегают. Излучательная способность факела в основном определяется составом продуктов сгорания и температурным уровнем процесса горения. Наибольшей излучательной способностью обладает пламя мазутного факела. На начальной стадии процесса горения мазута наблюдается образование большого количества частиц сажи. Обычно такой факел называют светящимся. Наименьшее излучение у факела, состоящего из трехатомных газов СО2 и Н2О, получаемого при сжигании газа. Такой факел называют несветящимся.

Существенное влияние на показания радиационного пирометра оказывает состояние поверхности контролируемого объекта, поскольку оно связано с его излучательной способностью.

обладают низкой излучательной способностью в инфракрасной области спектра. Вот почему они хорошо сохраняют теплоту и медленно остывают.

Однако подобный анализ справедлив лишь для черного тела, ибо только оно дает сплошной спектр излучения. Для реальных тел нужно учитывать, что излучательная способность зависит от длины волны. При данной температуре длина волны, соответствующая максимуму излучения (для абсолютно черного тела), может быть найдена из (6.18). Если реальное тело при этой темепратуре обладает чрезвычайно низкой излучательной способностью, оно будет разогреваться все сильнее и сильнее (условно предполагаем, что теплота никуда не отводится), пока его температура не возрастет настолько, что длины волн, соответствующие максимуму интенсивности излучения, сместятся в ту область спектра, где излучательная способность тела будет высокой. Существуют ли такие материалы?

Противопожарные меры. Водород быстро воспламеняется и горит невидимым пламенем; для тушения CGA рекомендует сухие порошковые огнетушители [2]. Пламя распространяется с очень высокой скоростью даже через узкие отверстия в холодных стенках. В случае применения таких огнетушителей пламя становится видимым. Водородное пламя обладает не столь большой излучательной способностью [2]. Это учтено при составлении таблиц допустимых расстояний, приведенных в стандарте.

Реальные вещества не являются абсолютно черными телами, а при каждой длине волны излучают лишь часть IK, равную ел/я . Коэффициент ех называется спектральной излучательной способностью или, проще, 18 спектральной степенью черноты.

Излучательной способностью е тела называется количество энергии, излучаемой с единицы площади поверхности тела в единицу времени. Излучательная способность абсолютно черного тела еа определяется в зависимости от его абсолютной температуры Т по закону Стефана Больцмана




Рекомендуем ознакомиться:
Источников электроэнергии
Источников инфракрасного
Источников колебаний
Источников расположенных
Источнику излучения
Итерационная процедура
Ивановича артоболевского
Избыточных контурных
Избыточная щелочность
Избыточной реактивности
Избыточного цементита
Избежание шлакования
Избежание излишнего
Исследований различных
Избежание ослабления
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки