Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Изменения пластичности



вию отрицательных температур (-60° С). Изменения пластичности образцов, предварительно выдержанных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетельствует о механохимической природе изменения пластических свойств.

В работах [1, 13] показано заметное различие кривых усталости металлов при осевом растяжении и кручении. Малоцикловая долговечность при знакопеременном кручении, выраженная через амплитуду эквивалентной пластической деформации, в несколько раз (более двух) больше, чем при одноосном напряженном состоянии. Различие циклической повреждаемости металла при разных видах циклической деформации видимо связано с тем, что предельная пластичность зависит от степени объемности (жесткости) напряженного состояния, характеризуемого отношением шарового тензора к девиатору. Некоторые среды вызывают сильные изменения пластических характеристик металла. Влияние среды на пластичность металла можно оценивать коэффициентом Ккс:

Исследования, проведенные в хлоркдиых растворах при нормальной температуре со скоростями деформации 7-Ю"4 с"1 и 7-Ю"5 с",1 показали следующее. Исжытанин со скоростью деформации 7-Ю"4 с"1 не выявили, в пределах ошибки эксперимента, изменения пластичности стали по отношению к испытаниям на воздухе. При уменьшении скорости деформации на порядок, величина относительного удлинении изменилась с 22Х при испытании на воздухе, до 25% в нейтральном хлоридном растворе и 17Х в подкисленном хлоридном растворе. Аналогичная закономерность наблюдалась для значений относительного сужения, величина которого для образцов, испытанных на воздухе, составляла - 67%, е нейтральном хлоридном растворе - 712 (ХМЭ; и подкисленном хлоридном растворе - ЗЗХ. Причем наблюдалась хорошая повторяемость результатов. Эффект изменения пластичности проявлялся только при снижении скорости нагружения до определенной величины, ниже которой коррозионный фактор "успевал" проявиться. Последнее, по - видимому, связано со значительным увеличением времени контакта поверхности металла с коррозионной средой. Увеличение параметров пластичности стали в нейтральном хлоридном растворе, по-видимому, вызвано проявлением хемомеханического эффекта, который в подкисленном растворе полностью подавлялся за счет наводороживачия металла в условиях протекания коррозии с водородной деполяризацией, что и приводило к уменьвк ли» параметров пластичности. По действию на параметры пластичности подкисленный хлоридный раствор оказывал такое же влияние, как воздействие отрицательных температур (-60° С). Изменения- пластичности образцов, предварительно выдержг'ных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетело-ствует о механохимической природе изменения пластических свойств.

Учитывая существование очевидной взаимосвязи между деформационными характеристиками (8, \\i) и параметрами (Бр, т), определяющими процесс пластической устойчивости /88/, можно с большой степенью уверенности утверждать о том, что специфика изменения пластических свойств металла прослойки от ее относительной толщины наложит определенный отпечаток на процесс устойчивости пластического

Учитывая существование очевидной взаимосвязи между деформационными характеристиками (8, vy) и параметрами (ер, т), определяющими процесс пластической устойчивости /88/, можно с большой степенью уверенности утверждать о том, что специфика изменения пластических свойств металла прослойки от ее относительной толщины наложит определенный отпечаток на процесс устойчивости пластического

Установив критерий текучести, определяющий начало пластического течения, необходимо теперь обосновать надлежащую зависимость между напряжениями и деформациями, которая описывает пластическое течение. Основное предположение наиболее часто используемого закона Прандтля — Рейсса состоит в том, что скорость изменения пластических деформаций в каждый момент времени пропорциональна компонентам девиатора напряжений, т. е.

В настоящей работе исследовались закономерности изменения пластических и прочностных свойств алюминия марки А 999 с одновременным наблюдением в микроскоп эволюции деформационного рельефа, возникающего на поверхности образца при активном растяжении в интервале температур 20—600° С.

Исследовались закономерности изменения пластических и прочностных свойств алюминия марки А-999 при активном растяжении в интервале температур 20—600° С. Показана корреляция между кинетикой пластического течения алюминия, неоднородностью протекания деформации и температурной вависимостью пластичности.

Анализ обширных экспериментальных данных по определению влияния темпе-ратурно-скоростных условий деформации на пластичность указывает на сложный, а подчас и аномальный характер изменения пластических характеристик при изменении температуры и скорости деформации.

Температурную зависимость изменения пластических свойств обычно принимают по формуле Е. М. Савицкого в виде возрастающей функции типа

а — Ige или температурной о — Ттси. При испытаниях на растяжение или кручение получают также кривые изменения пластических характеристик (б, гз, п, Лр и т. д.) в зависимости от температурно-скоростных условий деформации. В последнее время все чаще используется метод построения объемных диаграмм

Исследования, проведенные в хлоридных растворах при нормальной температуре со скоростью деформации 7 х 10"4 с"1, не выявили, в пределах ошибки эксперимента, изменения пластичности стали по отношению к испытаниям на воздухе. При уменьшении скорости деформации на порядок (7 х 10"5 с'1) величина относительного удлинения изменилась с 22% при испытании на воздухе до 25% в нейтральном хлоридном растворе и 17% в подкисленном хлоридном растворе. Аналогичная закономерность наблюдалась для значений относительного сужения, величина которого для образцов, испытанных на воздухе, составляла — 67%, нейтральном хлоридном растворе - 71% и подкисленном хлоридном растворе — 33% с хорошей воспроизводимостью результатов. Эффект изменения пластичности проявлялся только при снижении скорости нагружения до определенной величины, при которой коррозионный фактор "успевал" проявиться. Последнее, по-видимому, связано со значительным увеличением времени контакта поверхности металла с коррозионной средой. Увеличение параметров пластичности стали в нейтральном хлоридном растворе, по-видимому, вызвано проявлением хемомеханического эффекта [36], который в подкисленном растворе полностью подавлялся за счет наводороживания металла в условиях протекания коррозии с водородной деполяризацией, что и приводило к уменьшению параметров пластичности. По действию на выбранные параметры пластичности подкисленный хлоридный раствор оказывал влияние, аналогичное воздейст-

вию отрицательных температур (-60° С). Изменения пластичности образцов, предварительно выдержанных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетельствует о механохимической природе изменения пластических свойств.

Исследования, проведенные в карбонат-бикарбонатной среде при скоростях нагружения 3 х 10"5 с"1 и диапазоне наложенных потенциалов минус 0,3-0,7 В (ХСЭ) в режиме двухполярной поляризации при температуре 20° С, не выявили в пределах ошибки эксперимента изменения пластичности по сравнению с пластичностью на воздухе. При увеличении температуры до 70° С отмечалось максимальное уменьшение относительного удлинения при потенциале поляризации минус 0,6 В (ХСЭ), в окрестностях которого и формировалась "узкая область" потенциалов КР. Испытания специально разработанных в Баттелевском институте (США) нестандартных образцов уменьшенного размера [174], проведенные в УГНТУ при температуре 70° С со скоростью деформации 8 х х Ю"6 с'1, показали большее изменение относительного удлинения -с 16% на воздухе до 11% в модельной среде при значении наложенного потенциала -0,6 В (ХСЭ), что, по-видимому, связано с проявлением масштабного фактора.

В соответствии с описанными выше процессами изменения строения наклепанного металла при его нагреве следует ожидать и соответствующего изменения свойств. Jlo мере повышения температуры твердость сначала 'слегка снижается вследствие явлений возврата. После отжига при температуре, несколько превышающей температуру рекристаллизации, твердость резко падает и достигает исходного значения (значения твердости до -наклепа). Эта температура и есть минимальная температура рекристаллизации, или порог рекристаллизации (рис. 69). Аналогично изменению твердости изменяются и другие показатели прочности (предел прочности, предел текучести). На рис. 69 показаны также изменения пластичности (б). Низкая температура нагрева и происходящий при ней возврат несколько повышают пластичность, но лишь рекристаллизация восстанавливает исходную (до наклепа) пластичность металла.

12.6. Характер изменения пластичности и прочности металлов и сплавов в области высоких температур при сварке

Рис. 12.42. Кривые изменения пластичности в т.и.х. для сварки в аргоне (а) и лазерной (б) для сплавов ОХ18Н9ВА (/) и ОХ18Н9ТЛ(2)

На рис. 12.42 приведены кривые изменения пластичности и значения т.и.х. для двух сплавов при сварке.

На рис. 12.43, б представлен случай, когда сплавы при одинаковой минимальной пластичности отличаются протяженностью температурного интервала хрупкости. При этом принято, что характер изменения пластичности в т.и.х. у всех трех рассматриваемых сплавов одинаков и пластичность остается практически неизменной на всем протяжении т.и.х.

12.6. Характер изменения пластичности и прочности металлов и сплавов в области высоких температур при сварке ..... 474

Исследования, проведенные в хлоркдиых растворах при нормальной температуре со скоростями деформации 7-Ю"4 с"1 и 7-Ю"5 с",1 показали следующее. Исжытанин со скоростью деформации 7-Ю"4 с"1 не выявили, в пределах ошибки эксперимента, изменения пластичности стали по отношению к испытаниям на воздухе. При уменьшении скорости деформации на порядок, величина относительного удлинении изменилась с 22Х при испытании на воздухе, до 25% в нейтральном хлоридном растворе и 17Х в подкисленном хлоридном растворе. Аналогичная закономерность наблюдалась для значений относительного сужения, величина которого для образцов, испытанных на воздухе, составляла - 67%, е нейтральном хлоридном растворе - 712 (ХМЭ; и подкисленном хлоридном растворе - ЗЗХ. Причем наблюдалась хорошая повторяемость результатов. Эффект изменения пластичности проявлялся только при снижении скорости нагружения до определенной величины, ниже которой коррозионный фактор "успевал" проявиться. Последнее, по - видимому, связано со значительным увеличением времени контакта поверхности металла с коррозионной средой. Увеличение параметров пластичности стали в нейтральном хлоридном растворе, по-видимому, вызвано проявлением хемомеханического эффекта, который в подкисленном растворе полностью подавлялся за счет наводороживачия металла в условиях протекания коррозии с водородной деполяризацией, что и приводило к уменьвк ли» параметров пластичности. По действию на параметры пластичности подкисленный хлоридный раствор оказывал такое же влияние, как воздействие отрицательных температур (-60° С). Изменения- пластичности образцов, предварительно выдержг'ных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетело-ствует о механохимической природе изменения пластических свойств.

перимента изменения пластичности в КБС по сравнению с пла, гич-ностью на воздухе. При увеличении температуры до 70° С отмечалось максимальное уменьшение относительного удлинения при потенциале поляризации минус 0.* В (ХиЭ). в окресностях которого и формиро валясь "узкая область" потенциалов КР. Испытания специально разработанных в Еаттелевском институте (США) нестандартных образцов умеяыиенчого размера, проведенные в УГНТУ при температуре 70° С со скоростью деформации 8-10~8 с'1, показали больше изменение относительного удлинения - с 16% на воздухе до 11% в модельной среде при значении наложенного потенциала -0,6 В (ХСЭ), что, очевидно, связано с проявлением масштабного фактора.




Рекомендуем ознакомиться:
Изготовления соответствующих
Изготовления сравнительно
Изготовления термически
Изготовления турбинных
Изготовления уплотнительных
Изготовление червячных
Исследованиями установлено
Изготовление инструментов
Изготовление многослойных
Изготовление продукции
Изготовление резиновых
Изготовление заготовки
Изготовлении аппаратуры
Изготовлении инструментов
Изготовлении крупногабаритных
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки