Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Информативного параметра



Каждый блок под действием приложенного напряжения подвергается изменению объема и формы. Основные соотношения для каждого элемента могут различаться, и поэтому решение увязывается с историей нагружения. Это требует формирования банка данных, содержащего кривые «напряжение - деформация» при одноосном растяжении, охватывающие область локальных скоростей деформации, реализуемых в различных объемах материала на фронте трещины. Согласно Г.К. Си, плотность энергии является наиболее информативным параметром состояния, а площадь под кривой «истинное напряжение -истинная деформация» характеризует изменение функции плотности энергии

Перечень MX измерительных каналов формируется в соответствии с нормативными документами. Он примерно такой же, как и для цифрового вольтметра переменного тока. Отличие состоит прежде всего в том, что форма измеряемых сигналов изменяется в очень широких пределах. Второе отличие — весьма жесткие требования к фазочастотным характеристикам, так как разность между фазовыми сдвигами от каждого измерительного канала должна быть минимальна, порядка 0,1° во всем диапазоне рабочих частот. Это связано с тем, что фаза измеряемых напряжений в АИК является важным информативным параметром. Третье отличие — специфические диапазоны амплитуд измеряемых напряжений, определяемых используемым первичным преобразователем.

Перечень MX измерительных каналов формируется в соответствии с нормативными документами. Он примерно такой же, как и для цифрового вольтметра переменного тока. Отличие состоит прежде всего в. том, что форма измеряемых сигналов изменяется в очень широких пределах. Второе отличие — весьма жесткие требования к фазочастотным характеристикам, так как разность между фазовыми сдвигами от каждого измерительного канала должна быть минимальна, порядка 0,1° во всем диапазоне рабочих частот. Это связано с тем, что фаза измеряемых напряжений в АИК является важным информативным параметром. Третье отличие — специфические диапазоны амплитуд измеряемых напряжений, определяемых используемым первичным преобразователем.

Следует иметь в виду, что среда может оказывать воздействие на направление вращения плоскости поляризации (левое и правое), что также может служить информативным параметром.

Автоматизация эксперимента в машиностроении предполагает существование следующих достаточно развитых этапов сбора и обработки измерительной информации: 1) преобразование механических процессов в первичный электрический сигнал с тем или иным информативным параметром; 2) преобразование первичного электрического сигнала во вторичный, обладающий заданной структурой,— различного вида модуляции информативной составляющей сигнала или цифровая форма представления данных; 3) автоматическая быстродействующая регистрация измерительной информации в виде, удобном для автоматизированной обработки на ЭЦВМ; 4) автоматизированная обработка результатов эксперимента.

Из изложенного следует, что «БАЗА СИГНАЛА» является наиболее информативным параметром процесса, подлежащего регистрации, при оценке максимально необходимого объема памяти и выборе типа регистратора. При исследовании динамики современных машин и механизмов удобно разделить весь частотный диапазон изучаемых процессов на пять областей: инфраниз-ких 0 -и КГ1 Гц, низких 1Q-1 -г- 50 Гц, средних 50 ч- 5-Ю3 Гц, высоких 5-103-ь 1-Ю5 Гц и сверхвысоких частот 1 • 105 ч-1 • 10е Гц,. которые для краткости можно назвать соответственно областями квазистатики, медленной, средней, быстрой, ударной динамики [6] — [8]. Такое деление, хотя и является чисто условным, относительно соответствует возможностям существующей регистрирующей аппаратуры различных типов и поэтому достаточно удобно для того, чтобы характеризовать особенности ее применения. Соответствующие области, построенные в координатах «полоса частот AF (Гц) — длительность регистрируемого процесса Гпр (с)», и распределения основных видов динамических процессов в различных машинах и механизмах в указанных областях показаны на рис. 2. Результаты получены на основании анализа 250 процессов, взятых из более чем ста различных литературных источников, отражающих результаты исследования практически всех видов современного машинного оборудования. В этих работах рассматривалось изменение таких основных видов механических параметров, как моменты, ускорения, перемещения, усилия, давления, вибрации в гидро- и пневмомеханизмах, электромоторах и т. д. Сетка линий В, нанесенная на рис. 2, представляет линии равной базы. Линия В = 10"1 близка к теоретическому пределу минимально возможного значения базы для физически реализуемых процессов, а линия В = 104 соответствует границе, разделяющей детерминированные и стационарные сигналы от нестационарных. Как следует из рис. 2, все изучаемые процессы имеют значения базы, лежащие в диапазоне 10"1 -т- 104. На основании проведенных исследований можно констатировать, что основное количество динамических процессов, встречающихся в современных машинах и механизмах, расположено в трех областях — медленной, средней и быстрой динамики. Область квазистатики занимают низкочастотные вибрации, а область ударной динамики — ударные волны, скачки давления, упругие удары и сверхзвуковые процессы. Динамические процессы в механизмах позиционирования занимают большую часть области средней динамики и область медленной динамики. Ударные процессы в этих механизмах обычно нежелательны.

В общем случае информативный параметр сигнала на выходе прибора у связан с информативным параметром сигнала на входе X, параметрами блоков прибора г\{, помехами и другими причинами аддитивных погрешностей Zj зависимостью

Тепловой вид неразрушающего контроля основан на регистрации изменений тепловых или температурных полей контролируемых объектов, Он применим к объектам из любых материалов. По характеру взаимодействия поля с контролируемым объектом различают методы: пассивный или собственного излучения (на объект не воздействуют внешним источником энергии) и активный (объект нагревают или охлаждают от внешнего источника). Измеряемыми информативным параметром является температура, либо тепловой поток.

По характеру взаимодействия с контролируемым объектом основным способом радиационного (рентгеновского и гамма) контроля является метод прохождения. Он основан на разном поглощении излучения материалом изделия и дефектом. Таким образом, информативным параметром здесь является плотность потока излучения: в местах утонений и дефектов плотность прошедшего потока возрастает. Чем больше толщина изделия, тем более высокочастотное (более жесткое) излучение применяют для контроля: рентгеновское, гамма (от распада ядер атомов), жесткое тормозное (от ускорителя электронов: бетатрона, микротрона, линейного ускорителя). Предельное значение толщины стали, контролируемое с помощью излучения последнего типа,— около 600 мм. Приемником излучения служит, например, рентгенопленка (радиографический метод), сканирующий сцинтилляционный счетчик частиц и фотонов (радиометрический метод), флуоресцирующий экран с последующим преобразованием изображения в телевизионное (радиоскопи-ческий метод) и т. д.

Активные ультразвуковые методы разнообразнее по схемам применения и получили гораздо более широкое распространение. Для контроля используют стоячие волны (вынужденные или свободные колебания объекта контроля или его части), бегущие волны по схемам прохождения и отражения. Методы колебаний используют для измерения толщин при одностороннем доступе и контроля свойств материалов (модуля упругости, коэффициента затухания). Информативным параметром служат частоты свободных или вынужденных колебаний и их амплитуды. Используют также метод, основанный на измерении режима колебаний преобразователя, соприкасающегося с объектом (импедансный метод). По амплитудам и резонансным частотам такого преобразователя (часто имеющего вид стержня) судят о твердости материала изделия, податливости (упругому импедансу) его поверхности. Податливость, в

рам его свободных или вынужденных колебаний (их частотам и величине потерь). В импедансных методах информативным параметром служит механический импеданс ОК в зоне его контакта с преобразователем.

Аппаратура. Разработано несколько вариантов установок для контроля листового проката зхосквозным методом. Они имеют до 480 пар излучателей-приемников для проверки листа по всей ширине (до 2800 мм), поэтому лист движется лишь в одном направлении. Излучающие и приемные преобразователи объединены в группы: например, при 288 парах преобразователей в установке имеется 24 генератора, к каждому из которых подключено 12 излучателей, и 12 приемно-усилительных каналов; в свою очередь, к каждому из них подключено по 24 приемных преобразователя. Включение генераторов и запись сигналов, принятых приемниками, осуществляют таким образом, чтобы каждой паре преобразователей соответствовал свой канал записи. Такая система включения обеспечивает большую экономию электронных блоков при высоком быстродействии установки. В установках реализованы отмеченные выше особенности метода: раздельная регистрация сквозного и эхосквозного сигналов в промежутке времени, соответствующем нижней половине листа, измерение их отношения в качестве информативного параметра [7].

Электрические методы основаны на .создании в контролируемом объекте электрического поля либо непосредственным воздействием на него электрическим возмущением (например, электростатическим полем, полем постоянного или переменного стационарного тока), либо косвенно с помощью воздействия возмущениями ие-i электрической природы (например, тепловым, механическим и др.)- В качестве первичного информативного параметра используются электрические характеристики объекта контроля.

Следует отметить, что информативные параметры ЭП зависят также от его конструкции и электрических характеристик среды, в которую помещен объект контроля. Первое обстоятельство учитывается при оптимизации конструкции ЭП, второе обычно является причиной возникновения мешающих контролю факторов. Как видно из рис. 1, в качестве первичного информативного параметра наиболее целесообразно использовать емкость ЭП и тангенс угла потерь. Однако для изучения анизотропных свойств объекта контроля необходимо пользоваться диаграммой зависимости диэлектрических параметров от направления вектора напряженности поля, созданного в объекте контроля. По назначению электроемкостные методы контроля могут быть классифицированы на три группы: измерение параметров состава и структуры материала, определение геометрических размеров . объекта контроля, контроль влажности.

Компенсацию влияния краевого эффекта (явления искажения информативного параметра входного сигнала на краях покрытого участка или на участках изменения формы поверхности [132]) или магнитных свойств при использовании магнитных методов производят установкой нуля прибора для непокрытой детали, подобной контролируемой.

Изложенное позволяет сделать вывод, что целесообразно в качестве информативного параметра использовать отношение амплитуд эхо-сквозного и сквозного сигналов. Это отношение практически однозначно связано с отражающими свойствами как непрозрачного дефекта небольшого размера, так и протяженного полупрозрачного дефекта. Оно не зависит от коэффициента прохождения через границу иммерсионная жидкость — изделие, который изменяется вследствие неровности поверхности листов, непараллельности их поверхностей, изменения угла ввода, связанного с протяжкой листа. Наконец, это отношение не зависит от разброса параметров ультразвуковых преобразователей и электронной аппаратуры, что очень важно при создании многоканальных установок, которые обычно применяют для контроля эхо-сквозным методом.

Вследствие зависимости СКП от информативного параметра Сг производилось усреднение Д на диапазоне измерения С**

Влияние геометрических размеров контролируемого объекта на характеристики СВЧ-сигналов определяется их отношением к длине волны в материале слоя, которая зависит от его электромагнитных параметров. При контроле геометрических размеров в режиме стоячей волны напряженность электрического поля в СВЧ-тракте будет периодически изменяться (см. рис. 4.10) при увеличении толщины какого-либо слоя контролируемого объекта или расстояния между излучающим и приемным устройствами и внешней границей контролируемого объекта (зазорами), это делает однозначный их контроль с использованием одночастотных методов чрезвычайно затруднительным. В зависимости от конкретных условий контроля, информативного параметра (амплитуда, фаза и т.д.) и метода выделения полезной информации однозначный контроль толщины возможен в пределах четверти или половины длины волны в данном материале. СВЧ-сигналы зависят от перепада свойств слоя покрытия и основания. Если основания из металла или сплава, значения сигналов будут наибольшими.

В установках реализованы отмеченные далее особенности метода: раздельная регистрация сквозного и эхосквозного сигналов в промежутке времени, соответствующем нижней половине листа; измерение их отношения в качестве информативного параметра.

Кроме собственных частот системы пьезоэлемент - ОК в качестве информативного параметра используют также ее добротность. Метод предложен в начале 50-х годов прошлого века фирмой Fokker (Нидерланды) [406], которая выпускала специализированные приборы под общим названием "Bondtester". Первоначально они предназначались в основном для определения прочности клеевых швов, одна-

Прочность и физико-механические свойства жестких пенопластов. Блоки из пенопласта типа ППУ-ЗФ контролируют на прочность на втором этапе, после выявления в них дефектных участков с не-сплошностями и крупными раковинами (см. разд. 4.6). Используют УЗ-метод прохождения и описанную в разд. 4.6 ультразвуковую установку. Контролируют блоки, в которых на первом этапе дефекты не обнаружены [197]. Цель такой проверки -выявление участков, не соответствующих требуемой ТУ 3198-77 прочности. В качестве информативного параметра используют скорость звука, точность измерения которой существенно меньше зависит от качества акустического контакта, чем амплитуды сигнала. Для этого предварительно проводят сопоставительные ультразвуковые и механические испытания на одних и тех же образцах с плотностью 80 ... 250 кг/м3. После их статистической обработки устанавливают корреляционные зависимости между средней скоростью звука сср и механическими характеристиками материала.

Момент времени xm, при котором обеспечивается оптимальное значение информативного параметра (максимальное значение отношения сигнал/шум)




Рекомендуем ознакомиться:
Информация содержится
Информации используется
Информации необходимо
Информации относительно
Информации позволяет
Идентичности параметров
Информационные возможности
Информационной поддержки
Информационного пространства
Информационно измерительной
Информацию полученную
Информативного параметра
Инфракрасном диапазоне
Ингибитированных материалов
Ингибитора атмосферной
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки