Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Интенсивности прошедшего



развитой пластической зоны па поверхности образца не зависит (в определенных пределах) от остроты разреза и наличия (или отсутствия) площадки текучести. Однако интенсивности пластических деформаций в конце; разреза и трещины, вообще говоря, должны сильно отличаться.

Рис. 47.3.! Распределение нормального напряжения а» и интенсивности пластических деформаций сдвига Вр в окрестности вершины трещины в неупрочняющемся материале.

Если же принять, что мощность скопления дислокаций пропорциональна их плотности р, которая в первом приближении пропорциональна интенсивности пластических деформаций сдвига ер,

Более подробно следует остановиться на значениях прочностных характеристик, которые в дальнейшем будут фигурировать в зависимостях для расчета статической прочности механически неоднородных соединений. Ранее, в работе /9/, для бездефектных соединений с мягкими прослойками нами была принята на основе многочисленных экспериментальных данных идеально-жестко-пластическая диаграмма мягкого металла М. При этом, в расчетных формулах данную диаграмму в условиях общей текучести аппроксимировали на уровне значений временного сопротивления металла М (а^). Для соединений с плоскостными дефектами такой подход применим не всегда. Последнее связано с ростом вблизи вершины дефекта показателя напряженного состояния П = о~0/Т (здесь о0 — гидростатическое давление, Т—- интенсивность касательных напряжений, которая равна пределу текучести мягкого ^ или Jc,. твердого металлов при чистом сдвиге). Предельную (предшествующую разрушению) интенсивность пластических деформаций е"р можно определить из диаграмм пластичности, отражающих связь предельной степени деформации сдвига Л с показателем напряженного состояния П для конкретных материалов сварных соединений /9, 24/ . Для этого необходимо знать показатель напряженного состояния П, величина которого зависит только от геометрических характеристик сварного соединения, степени его механической неоднородности и размеров дефекта П = vy (ae, t / В, Kg) и определяется из теоретического анализа. Определив значение предельной интенсивности пластических деформаций Е"!' , по реальной диаграмме деформирования рассматриваемого металла О,-=/(бг) находим величину интенсивности напряжений в пластической области а(. Интервалы изменения С j следующие: ат < 0; < ств. Для плоской деформации та -кая подстановка с^ в получаемые формулы означает замену временного сопротивления ав на данную величину.

Приведем значения показателя напряженного состояния П в вершине дефекта, исходя из которого по диаграммам пластичности находят предельную степень интенсивности пластических деформаций.

Более подробно следует остановиться на значениях прочностных характеристик, которые в дальнейшем будут фигурировать в зависимостях для расчета статической прочности механически неоднородных соединений. Ранее, в работе /9/, для бездефектных соединений с мягкими прослойками нами была принята на основе многочисленных экспериментальных данных идеально-жестко-пластическая диаграмма мягкого металла М. При этом, в расчетных формулах данную диаграмму в условиях общей текучести аппроксимировали на уровне значений временного сопротивления металла М (ojf). Для соединений с плоскостными дефектами такой подход применим не всегда. Последнее связано с ростом вблизи вершины дефекта показателя напряженного состояния П = а0/Т (здесь ст0 — гидростатическое давление, Т— интенсивность касательных напряжений, которая равна пределу текучести мягкого k^ или k^ твердого металлов при чистом сдвиге). Предельную (предшествующую разрушению) интенсивность пластических деформаций е"р можно определить из диаграмм пластичности, отражающих связь предельной степени деформации сдвига Л с показателем напряженного состояния П для конкретных материалов сварных соединений /9,24/ . Для этого необходимо знать показатель напряженного состояния П, величина которого зависит только отгеометрическиххарак-теристик сварного соединения, степени его механической неоднородности и размеров дефекта П = у (ж, I /В, К^) и определяется из теоретического анализа. Определив значение предельной интенсивности пластических деформаций s"p, по реальной диаграмме деформирования рассматриваемого металла СТ( =/(Б;) находим величину интенсивности напряжений в пластической области <5{. Интервалы изменения (Т,- следующие:^ < <7; < (Тв. Для плоской деформации такая подстановка а( в получаемые формулы означает замену временного сопротивления СТВ на данную величину.

Приведем значения показателя напряженного состояния П в вершине дефекта, исходя из которого по диаграммам пластичности находят предельную степень интенсивности пластических деформаций.

Таким образом, решение поставленной задачи сводится к определению входящих в равенство (6) параметров а\ и R. Величина интенсивности напряжений о";, соответствующая некоторой величине интенсивности пластических деформаций ef, определится с учетом (8) из выражения (9).

Расчеты на малоцикловую усталость при сложном напряженном состоянии в условиях жесткого нагружения проводятся достаточно редко, но если это все-таки делается, то нагружение является обычно пропорциональным. В этом случае формула вида (5.17) распространяется на зависимость интенсивности напряжений от интенсивности пластических деформаций

В исходном нулевом приближении принимается распределение напряжений, полученное в пределах упругости. Если в некоторой точке а( ^> ат, то отрезок CD (фиг. 25) будет нижней границей действительной интенсивности пластических деформаций е; „min, а отрезок DB — нижней границей действительной интенсивности напряжений 0,-mul в этой точке. Для получения верхней границы интенсивности напряжений по уравнению

Для оценки накопленных в процессе деформирования повреждений в материале предложены различные скалярные и тензорные параметры [48—61]. Одним из таких параметров является изменение плотности, характеризующее не только качественные структурные повреждения, но и являющееся количественной характеристикой повреждаемости (пластического разрыхления) материала. Как показывают многочисленные исследования [51, 56, 58, 67—69], остаточное изменение плотности (или остаточное изменение объема) непосредственно отражает микропроцесс накопления повреждений (образование микропор и микротрещин) и является его количественной характеристикой. Теория пластического разрушения, основанная на росте пор, правильно описывает качественную зависимость разрушения от предыстории деформации, гидростатической составляющей напряжения, от отношения размеров образца к расстоянию между включениями и от анизотропии включений [67]. На первой стадии разрушения необратимое изменение объема (пластическое разрыхление) мало по сравнению с амплитудными значениями компонент тензора деформации. К концу второй стадии при циклическом деформировании остаточное изменение объема может быть соизмеримо с амплитудными значениями интенсивности пластических деформаций и достигать значений (1—5)-10~3 [51, 58, 59]. Важность необратимого изменения объема в оценке прочности материала подчеркивается также тем, что при таких воздействиях, как облучение материала конструкции потоками различного рода частиц, происходит образование объемных дефектов в кристаллической решетке, приводящих к распуханию материала и снижению его прочности. Например, накопление межузельных атомов приводит к образованию дополнительных растягивающих усилий, которые способствуют раскрытию благоприятно ориентированных микротрещип [70]. Уменьшение критического напряжения пропорционально радиапионному объемному распуханию материала, для которого может бытыюлучено соответствующее кинетическое уравнение [70].

тода радиационной дефектоскопии. Схема измерения толщины основана на ослаблении или отражении (обратном рассеянии) ионизирующих излучений. Прошедшее через измеряемый материал излучение содержит информацию о толщине и регистрируется детектором излучения. Электрический сигнал, пропорциональный интенсивности прошедшего излучения, с детектора через усилитель поступает на измерительный прибор, шкала которого градуирована в единицах толщины измеряемого материала.

Значительное различие акустических импедансов материала задержки и контактной жидкости вызывает интенсивное отражение ультразвука от торца задержки и резкое уменьшение (более чем в 100 раз) интенсивности прошедшего сигнала.

' Процесс контроля дефектов на данной установке производится следующим образом. Поток инфракрасного излучения формируется излучателем и направляется на изделие. Спектр излучаемого сигнала зависит от типа ИК-источника, оптических свойств исследуемого материала, толщины изделия и ряда других факторов. Однако учитывая, что многие виды пластмасс и стеклопластиков имеют окна прозрачности на различных длинах волн, более целесообразно использовать источники с широким спектром излучения. Еще одним важным требованием, предъявляемым к ИК-источникам, является обеспечение постоянной интенсивности излучения. Стабильную работу излучателя обеспечивает блок питания 4. Прошедшее через изделие излучение с заложенной информацией о свойствах и структуре материала поступает на приемник, в котором энергия излучения преобразуется в электрический сигнал и усиливается в блоке усилителей 3 до мощности, необходимой для работы фотомодуляционной лампы 5. Фотомодуляционная лампа преобразует электрический сигнал в световой, который фиксируется на фотоматериале (пленка, пластинка, бумага и т. п.), заложенном в фотокассету 6. Яркость светового сигнала пропорциональна интенсивности прошедшего через изделие излучения.

следующих операций: сообщение пластине электростатич. заряда, экспонирование, проявление скрытого электростатич. изображения. Для сообщения электростатич. заряда ксерографич. пластину, находящуюся в кассете (чувствительным слоем обращена в сторону крышки кассеты), помещают в поле коронного разряда (10—15 ке). Продолжительность зарядки 1—10 сек. Заряд сохраняется в закрытой кассете в течение 1—5 час. При экспонировании на пластину, находящуюся в закрытой кассете, накладывают детали, подлежащие просвечиванию. Экспозиции при просвечивании гамма-лучами Со60 примерно равны, а при просвечивании рентгеновскими лучами в 2—6 раз меньше экспозиций, необходимых при использовании рентгеновской пленки. При облучении деталей поверхностный заряд отдельных участков чувствительного «лоя изменяет свою величину в зависимости от интенсивности прошедшего излучения, к-рое в свою очередь зависит от толщины деталей и наличия в них дефектов. В результате просвечивания на поверхности чувствительного слоя образуется т. н. скрытое электростатич. изображение. Проявление скрытого электростатич. изображения производится без доступа света путем опыления чувствительного слоя пластины, находящейся в кассете, тончай-

ОПТИЧЕСКАЯ ПЛОТНОСТЬ — безразмерная величина, характеризующая степень погашения света, прошедшего через слой материала. Равна десятичному логарифму отношения интенсивности падающего света к интенсивности прошедшего

Из-за различной интенсивности прошедшего через исследуемый объект излучения (при наличии в нем дефектов) соответственно различно и сопротивление на определенных участках фотополупроводящего слоя пластины. В местах, где интенсивность выше, сопротивление уменьшается в боль-

Следует отметить также, что после прохождения слоя материала спектральный состав немоноэнергетического излучения изменяется, так как кванты различной энергии поглощаются по-разному. Обычно фотоны низких энергий затухают быстрее, поэтому эффективный линейный коэффициент ослабления увеличивается, а прошедшее излучение становится по спектральному составу более жестким, это используется в целях фильтрации. При анализе интенсивности прошедшего излучения или мощности экспозиционной дозы в широком пучке следует учитывать, что часть квантов, рассеянных вторично, также попадает на индикатор или первичный измерительный преобразователь и увеличивает мощность экспозиционной дозы. Это увеличение учитывается умножением на коэффициент накопления или путем уменьшения линейного коэффициента ослабления на цш<ц.

Источник излучения ИИ создает поток энергии соответствующего вида излучения. Чтобы излучение шло только в область, где располагается контролируемый объект КО, источник излучения И помещен в защитный контейнер ЗК, который, кроме того, снижает загрязнение излучением окружающей среды. Для того чтобы контролируемый объект облучался только в течение определенного времени, необходимого для контроля, на пути излучения установлен затвор 3', управляемый оператором и определяющий в-ремя экспозиции t3, с учетом интенсивности прошедшего излучения изме- Рис 7 15 Схема радИаВДон„ого конт-ряемои экспонометром ЭКС. Из- р0ля по прошедшему излучению лучение источника И может содержать компоненты излучений различных видов или спектрального состава, в связи с чем на пути устанавливается фильтр Ф, пропускающий только необходимую часть излучения. Фильтр Ф выполняется чаще всего в виде пластин определенной толщины из материала, хорошо поглощающего мешающую часть излучения. Помимо того, в состав фильтра может входить коллиматор — специальный элемент значительной толщины, часто в виде плиты со сходящимися коническими отверстиями. Коллиматор улучшает конфигурацию поперечного сечения выходящего потока излучения, например, за счет сильного поглощения лучей, выходящих от частей источника, удаленных от его центра, уменьшает эффективные размеры источника, что увеличивает четкость радиационного изображения и повышает разрешающую способность контроля. В контакте с контролируемым объектом находятся: компенсатор КМ, эталоны чувствительности ЭЧ и маркировочные знаки МЗ.

Увеличение изображения в рентгенотелевизионном микроскопе происходит по двум причинам: за счет большого формата телевизионного изображения на выходном экране кинескопа (телевизионное увеличение) и за счет геометрического увеличения изображения в рентгеновских лучах, появляющегося из-за большого расстояния от изделия до рентгеновидикона, хотя последнее и приводит к некоторой потере четкости. Форма телевизионного видеосигнала в значительной степени повторяет изменение интенсивности прошедшего излучения от строения просвечиваемого объекта и дефектов (рис. 7.23, 7.24).

Промышленная рентгеновская томография {1] является высокоэффективным методом неразрушающего контроля качества. Она стала возможна в связи с широким внедрением ЭВМ с большим быстродействием и объемом памяти и небольшими габаритами. Вычислительная томография реализует возможность решения обратной задачи интроскопии — по объемной информации об интенсивности прошедшего сквозь контролируемый объект в различных направлениях излучения найти распределение линейного коэффициента ослабления, связанного с плотностью материала внутри объема контролируемого объекта. К сожалению, в настоящее время пока нет качественных и надежных трехмерных индикаторов и поэтому оператор излучает послойные изображения (томограммы) контролируемого объекта. Томограммы по сравнению с обычным рентгеновским изображением имеют гораздо большую информативность, поскольку детально показывают внутреннюю геометрическую структуру, распределение плотности и элементного состава материалов, что невозможно при использовании обычных методов без разрушения контролируемого объекта. Повышенный объем информации и ее детализация в рентгеновской вычислитель-

Нейтронная радиография [1] основана на облучении контролируемого объекта нейтронами и регистрации интенсивности прошедшего излучения. Взаимодействие нейтронов с веществом в значительно большей степени зависит от химического состава контролируемого объекта и энергии нейтрона (см. § 7.5), что определяет перспективы такого контроля. Принципиально важное значение нейтронной радиографии состоит в возможности раздельного контроля химических компонентов материала. Например, с использованием обычных методов невозможно даже обнаружить наличие легких или органических материалов на стали при близких толщинах, а нейтронная радиография позволяет вести контроль деталей размером около 1 мм из органических материалов сквозь слои металлов толщиной в сантиметры. Это открывает широкие и разнообразные области применения нейтронных методов для неразрушающего контроля сложных многослойных изделий.




Рекомендуем ознакомиться:
Интенсивном охлаждении
Интенсивностью перемешивания
Интенсивность абразивного
Интенсивность изменения
Интенсивность коррозионных
Иммерсионной жидкостью
Интенсивность напряженного
Интенсивность окисления
Интенсивность поглощения
Интенсивность протекания
Интенсивность равномерно
Интенсивность теплообмена
Интенсивность турбулентного
Интенсивность выделения
Интенсивность уменьшения
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки