Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Импульсного ультразвукового



Практически каждая деталь или узел машины или прибора связаны с другими деталями. Эти связи при малых деформациях можно считать упругими. Поэтому каждая деталь обладает возможностью собственных колебаний по гармоническому закону, если их вывести из равновесия путем импульсного воздействия — толчка.

При математическом моделировании движения жидкого металла В ближней зоне воздействия использовались нелинейные уравнения вязкой теплопроводной жидкости — уравнения Навье-Стокса. Для их численного решения использовался метод Маккормака, хорошо зарекомендовавший себя при решении данного типа задач. Расчеты показали, что под действием внешнего импульсного воздействия в расплаве возникают два типа движения среды: регулярные акустические течения, охватывающие достаточно большие области пространства, и турбулентные течения непосредственно на фронте кристаллизации, имеющие характер многочисленных мелкомасштабных вихрей.

Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл—среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалент-ности связи железо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали.

Однако конструкторы обычно применяют композиционные материалы для того, чтобы они воспринимали силы или распределенные нагрузки. В случае, когда эти силы образуются в результате удара или импульсного воздействия, они распространяются по конструкции в виде волн напряжений. Если напряженное состояние конструкции при статическом или квази-статическом (колебания) нагружении может быть предсказано с помощью достаточно хорошо разработанных методов, то анализ распространения импульсов напряжений в сложных конструкциях даже для однородных материалов представляет значительные трудности. Анизотропия и свойственная композиционным материалам неоднородность еще более усложняют эту проблему.

Если движение в плоскости и изгиб возбуждаются в результате импульсного воздействия одновременно, то две волны, соответствующие плоскому движению, и две волны изгиба распространяются с одинаковыми скоростями.

справедливом для временных интервалов, удаленных от момента импульсного воздействия, или для точек, лежащих на достаточно большом расстоянии от источника волны.

Как уже отмечалось ранее, при достаточно большой длительности импульсного воздействия дисперсию в первом приближении можно не учитывать и использовать модель эквивалентного анизотропного материала [уравнения (7) и (12)]. Один из эффектов, связанных с анизотропией, проявляется в задаче об ударе по краю ортотропной пластины, когда сила действует в плоскости пластины, а край составляет некоторый угол с осью симметрии материала. Если не учитывать конструкционнукГд внутреннюю дисперсию в материале, то для решения этой задачи можно воспользоваться уравнениями (7) и следующими граничными условиями на краю:

Максимальные напряжения возникают сразу после окончания импульсного воздействия и распространяются вдоль волокон.

При использовании указанной зависимости (4) для оценки температуры в зоне импульсного воздействия лазерного излучения предполагают, что коэффициент поглощения материала очень велик

Ударная волна создается в результате мгновенного импульсного воздействия на поверхность материала, вследствие чего тонкий поверхностный слой быстро испаряется. Давление этой волны и интенсивность механического воздействия определяются плотностью мощности лазерного излучения и теплофизическими характеристиками материала поверхностного покрытия (отражательной способностью, энергией сублимации и ионизации обрабатываемого материала). Облучению подвергали образцы без покрытий, с прозрачным кварцевым покрытием, с покрытием в виде свинцовой фольги, а также с комбинированным покрытием кварцем и свинцом. При воздействии излучения на свинцовое покрытие из-за низкой энергии сублимации свинца это покрытие испаряется раньше, чем слой железа (подложка), вследствие чего увеличивается импульс отдачи, а следовательно, и давление ударной волны. Покрытие кварцем способствует ограничению испарения металла.

в случае импульсного воздействия

Как отмечалось во введении, эхометод — основной метод АК, поэтому он здесь рассмотрен наиболее полно. Контроль этим методом выполняют с помощью импульсного ультразвукового дефектоскопа.

Количественный ультразвуковой контроль МКК проводится при помощи импульсного ультразвукового анализатора ДСК-1 (или ДСК-1М), принципиальная схема которого приведена на рис. 3.12. Прибор состоит из задающего генератора 1, генератора радиоимпульсов 2, аттенюатора 3, усилителя 4, генератора развертки 5, измерителя интервалов времени 6, осциллографического индикатора 7, излучающего пьезопреобразователя 8А, приемного пьезопреобра-зователя 8Б.

Для указанных целей разработан прибор «Акон-4», имеющий абсолютную погрешность измерения времени распространения УЗК 0,01—0,03 икс, габаритные размеры 170X280X350 мм, массу 7 кг. Прибор разработан на основе унифицированного импульсного ультразвукового дефектоскопа типа УД-11ПУ. Параметры контролируемых шпилек (болтов) следующие: Ml8 ... М140 при отношении длины к диаметру до семи; максимальная длина в направлении прозвучивания — до 800 мм, минимальная — 30 мм. Возможная абсолютная погрешность определения напряжений <~~ (10— 50) МПа. Прибор позволяет осуще-

гается в данной работе при помощи импульсного ультразвукового метода.

Несомненно, что надежность и долговечность каждой детали во многом зависят от ее качества, наличия трещин, пустот, рыхлостей и других аналогичных дефектов в детали, от свойств металла, качества термообработки, толщины покрытий, неоднородности металла по сечению, наклепа и внутренних напряжений. Для ознакомления с методами неразрушающего контроля материала, выявления перечисленных дефектов и оценки свойств деталей студентам предлагается выполнить лабораторную работу «Изучение конструкций и областей применения дефектоскопов в целях повышения надежности изделий». При выполнении данной работы студенты изучают конструкции и принципы действия электро-индуктивного дефектоскопа ЭМИД-4М, люминесцентного дефектоскопа типа ЛД-4, импульсного ультразвукового эходефектоскопа типа УДМ-1М и магнитного дефектоскопа типа ДМП-2, а также с помощью указанных приборов производят ряд экспериментальных исследований.

Фиг. 12. Блок-схема импульсного ультразвукового эходефектоскопа.

Наиболее совершенным и широко распространенным в дефектоскопии является эхо-метод, который поясняется блок-схемой импульсного ультразвукового дефектоскопа,

На рис. 31 приведена принципиальная схема импульсного ультразвукового дефектоскопа. Высокочастотный генератор, образуя кратковременные импульсы переменного напряжения высокой частоты, передает их на пьезоэлектрический вибратор, который преобразует эти колебания в упругие колебания той же частоты. При соприкосновении вибратора (щупа) с деталью импульсы упругих колебаний поступают в металл и распространяются в нем в виде слегка расходящегося пучка. Если на пути распространения импульсов упругих колебаний встречается дефект, то часть

Рис. 31. Принципиальная схема импульсного ультразвукового дефектоскопа:

струкции ЦНИИТМАШа и НК.МЗ. Ультразвуковой контроль сварных швов, производимый с помощью импульсного ультразвукового дефектоскопа, позволяет выявить непровары, трещины, шлаковые включения, поры.

Рис. 6. Блок-схема импульсного ультразвукового дефектоскопа:

Структурная схема импульсного ультразвукового эходефектоскопа приведена на рис. 8.8. Электроакустический преобразователь ЭАП (пьезоэлектрический искатель) служит для преобразования электромагнитных колебаний в ультразвуковые, излучения их в изделие и приема колебаний, отраженных от дефектов. Усилитель сигналов УС состоит из усилителя высокой частоты с коэффициентом усиления 10 —10 и детектора. Генератор зондирующих импульсов ГИ вырабатывает высокочастотные импульсы напряжения, возбуждающие ультразвуковые колебания ЭАП. Синхронизатор С предназначен для обеспечения синхронной работы узлов дефектоскопа. Он обеспечивает одновременный запуск генератора ГИ и генератора линейно изменяющегося напряжения ГЛИН, который служит для формирования напряжения развертки электронно-лучевой трубки ЭЛТ. Измеритель времени ИВ предназначен для измерения времени прохождения импульса до дефекта и обратно. Регистрирующее устройство РУ селектирует эхосигнал от дефекта по времени и по амплитуде и фиксирует его на самописце. Блок регулировки чувствительности РЧ служит для выравнивания амплитуд сигналов от дефектов, залегающих на разной глубине.




Рекомендуем ознакомиться:
Используется совместно
Используется сравнительно
Используется установка
Используются эмпирические
Индуктивных преобразователей
Используются комбинированные
Используются непосредственно
Используются параметры
Используются представления
Используются результаты
Используются сравнительно
Используются установки
Используют численные
Используют эмпирические
Используют диаграмму
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки