Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Использовании углеродных



тиков. В сентябре 1982 г. состоялся первый полет этого самолета. Для изготовления различных панельных элементов самолета использовалось около 1 т углепластиков и других современных композиционных материалов [56] (см. рис. 6. 13 и табл. 3. 20). Авиапромышленностью США сейчас разрабатывается самолет, в котором углепластики будут использованы для изготовления фюзеляжа, крыльев и хвостового оперения, приводных валов и других деталей, за исключением деталей двигателя (рис. 6. 14). Благодаря снижению массы самолета при использовании углепластиков повышается его экономичность и снижается стоимость по сравнению с предыдущими моделями [57] .

Особенностью композиционных материалов является то, что их свойства можно задавать заранее (или проектировать). Если же к ним применять методы расчета обычных металлов, обладающих некоторыми детерминированными свойствами, то основные достоинства композиционных материалов не будут реализованы. При использовании углепластиков прежде всего принимаются во внимание наиболее важные с точки зрения свойств материала характеристики (например, ориентация волокон), а затем уже ведется расчет конструкционных свойств композиционного материала. Так как углепластики отличаются по структуре и механическим характеристикам от металлов, расчеты требуют особого внимания, с тем чтобы исключить возможность неправильного решения. В данной главе рассмотрен широкий круг вопросов — от основ расчета углепластиков и до примеров практического решения некоторых типичных задач.

Композиционные материалы на основе углеродных волокон применяются в автомобилестроении несколько в меньшем масштабе, чем в аэрокосмической промышленности. Это связано с высокой стоимостью этих материалов, а также с отставанием в разработке методов массового производства композиционных материалов. Например, стоимость 1 кг конструкции современных автомобилей из традиционных материалов составляет приблизительно 1000 иен. В то же время стоимость углепластиков - от десяти тысяч до нескольких десятков тысяч иен за 1 кг, т. е. в 10 или в несколько десятков раз выше. При использовании углепластиков в аэрокосмической промышленности высокая цена материала не столь существенна из-за высокой стоимости всего изделия, поэтому можно использовать довольно трудоемкий метод автоклавного формования, а в автомобилестроении возможность применения углепластиков лимитируется стоимостью материала и сложностью существующих методов формования.

Рассмотрим вопрос об изготовлении листовых рессор. Жесткость одной стальной пластины рессоры, выдерживающей определенную нагрузку (пластина с определенной толщиной), оказывается очень высокой -постоянная пружины будет ниже необходимой. Поэтому до настоящего времени использовались рессоры, состоящие из нескольких пластин (в легковых автомобилях - из 2—4 пластин, а в грузовых автомобилях — из 10 и больше пластин). Если же использовать углепластики, обладающие к тому же очень высокими усталостными характеристиками, то можно существенно снизить массу листовых рессор (табл. 6.13). Используя гибридные композиционные полимерные материалы на основе стеклянных и углеродных волокон, можно получить еще более хорошие характеристики листовых рессор, чем при использовании углепластиков. Листовые рессоры из армированных пластиков можно изготавливать методом горячего прессования с высокой экономической эффективностью.

При использовании углепластиков для изготовления приводных (карданных) валов ожидается: 1) снижение их массы; 2) увеличение критической скорости вращения R = К (EI/WL*)^'^ (К — постоянная, Е — модуль упругости при изгибе, / - момент сопротивления сечения, W — масса единицы длины вала, L - длина приводного вала); 3) увеличение длины приводного вала (возможность изготавливать не двухсту-

Таблица 6.14, Снижение массы деталей автомобилей благодаря использовании: углепластиков [25]

2) диаметр 70 мм, длина 300 мм, толщина стенки 2 мм и масса 190 г. Оба вида манипуляторов получают методом намотки. Если изготовить их из алюминиевого сплава, то масса составит соответственно 146 и 346 г, т. е. в обоих случаях при использовании углепластиков достигается выигрыш в весе примерно в два раза [29] . Применение углепластиков в транспортных манипуляторах (масса 1 кг) роботов с искусственным интеллектом фирмы "Сумитомо дэнко" также дает выигрыш в весе примерно в два раза по сравнению с манипуляторами, изготовленными из алюминия.

тиков. В сентябре 1982 г. состоялся первый полет этого самолета. Для изготовления различных панельных элементов самолета использовалось около 1 т углепластиков и других современных композиционных материалов [56] (см. рис. 6. 13 и табл. 3. 20). Авиапромышленностью США сейчас разрабатывается самолет, в котором углепластики будут использованы для изготовления фюзеляжа, крыльев и хвостового оперения, приводных валов и других деталей, за исключением деталей двигателя (рис. 6. 14). Благодаря снижению массы самолета при использовании углепластиков повышается его экономичность и снижается стоимость по сравнению с предыдущими моделями [57] .

Особенностью композиционных материалов является то, что их свойства можно задавать заранее (или проектировать). Если же к ним применять методы расчета обычных металлов, обладающих некоторыми детерминированными свойствами, то основные достоинства композиционных материалов не будут реализованы. При использовании углепластиков прежде всего принимаются во внимание наиболее важные с точки зрения свойств материала характеристики (например, ориентация волокон), а затем уже ведется расчет конструкционных свойств композиционного материала. Так как углепластики отличаются по структуре и механическим характеристикам от металлов, расчеты требуют особого внимания, с тем чтобы исключить возможность неправильного решения. В данной главе рассмотрен широкий круг вопросов — от основ расчета углепластиков и до примеров практического решения некоторых типичных задач.

Композиционные материалы на основе углеродных волокон применяются в автомобилестроении несколько в меньшем масштабе, чем в аэрокосмической промышленности. Это связано с высокой стоимостью этих материалов, а также с отставанием в разработке методов массового производства композиционных материалов. Например, стоимость 1 кг конструкции современных автомобилей из традиционных материалов составляет приблизительно 1000 иен. В то же время стоимость углепластиков — от десяти тысяч до нескольких десятков тысяч иен за 1 кг, т. е. в 10 или в несколько десятков раз выше. При использовании углепластиков в аэрокосмической промышленности высокая цена материала не столь существенна из-за высокой стоимости всего изделия, поэтому можно использовать довольно трудоемкий метод автоклавного формования, а в автомобилестроении возможность применения углепластиков лимитируется стоимостью материала и сложностью существующих методов формования.

Рассмотрим вопрос об изготовлении листовых рессор. Жесткость одной стальной пластины рессоры, выдерживающей определенную нагрузку (пластина с определенной толщиной), оказывается очень высокой — постоянная пружины будет ниже необходимой. Поэтому до настоящего времени использовались рессоры, состоящие из нескольких пластин (в легковых автомобилях — из 2—4 пластин, а в грузовых автомобилях — из 10 и больше пластин). Если же использовать углепластики, обладающие к тому же очень высокими усталостными характеристиками, то можно существенно снизить массу листовых рессор (табл. 6.13). Используя гибридные композиционные полимерные материалы на основе стеклянных и углеродных волокон, можно получить еще более хорошие характеристики листовых рессор, чем при использовании углепластиков. Листовые рессоры из армированных пластиков можно изготавливать методом горячего прессования с высокой экономической эффективностью.

В этой главе приведены примеры использования углепластиков в производстве предметов широкого потребления. Показана возможность улучшения в ряде случаев характеристик изделий при использовании углеродных волокон. Изделия, описываемые в этой главе и изготовляемые в Англии, Японии и США, свидетельствуют о быстром увеличении объема ежегодного производства углеродных волокон, которое должно привести к сильному снижению стоимости материалов, препятствующей в настоящее время их использованию в некоторых конструкциях. Рассмотрены следующие изделия: ручки клюшек для игры в гольф, удочки, теннисные ракетки, луки, яхты и каяки, измерительное оборудование, автомобили с повышенной надежностью и гоночные автомобили, одноколки, детали самолетов и велосипедов, ремизные рамы ткацких вханков, протезы.

жгутов, состоящих из 1000, 3000,6000, 10 000 и большего числа элементарных непрерывных волокон. Кроме того, выпускаются ткани из этих волокон, а также жгуты, состоящие из еще большего числа элементарных волокон. При использовании углеродных волокон для армирования пластмасс проводят обработку их поверхности с целью улучшения взаимодействия волокон и матрицы. С этой же целью, а также для улучшения технологических свойств нитей и жгутов и эксплуатационных характеристик углепластиков поверхность волокон подвергается шлихтованию или аппретированию. Для армирования термопластичных матриц используют рубленые волокна размером от нескольких миллиметров до 1-2 см.1) Углеродные волокна на основе обычных пеков представляют собой пучки из множества элементарных волокон длиной до 20—30 см и диаметром от долей микрометра до нескольких микрометров или образуют хлопкообразный мат с хаотичным расположением волокон.

Обработка поверхности волокон, используемых для армирования пластмасс. Чтобы армированные углеродными волокнами пластмассы, т. е. углепластики, обладали высокими механическими характеристиками, необходимо обеспечить прочность адгезионной связи между углеродными волокнами и полимерной матрицей, достаточную для передачи напряжения от волокна к волокну. Однако поверхность углеродных волокон, образовавшихся в процессе карбонизации или графити-зации, характеризуется слабой адгезией к ней полимерной матрицы. Следовательно, при использовании углеродных волокон для армирования пластмасс необходимо проводить обработку их поверхности с целью повышения адгезии. Обработка поверхности представляет собой обычно слабое окисление поверхности волокон, не снижающее их прочностных характеристик. Окисление осуществляют, например, в жидкости электролитическим методом [14] .0

Термопластичные смолы, используемые для получения препрегоа и листов для холодного штампования. Как и для литьевых термопластов, при получении препрегов и листов для холодного штампования важно, чтобы связующее могло приникать в межволоконное пространство пучков углеродных волокон. С этой точки зрения наиболее подходящими являются полимеры с низкой вязкостью, такие, как найлон, полиэтилен-терефталат, полифениленсульфид и т. д. При высокой вязкости полимеров можно получать армированные пластики "мокрым" методом, используя соответствующие растворители. Пластики на основе углеродных волокон еще находятся в стадии разработки, а для получения термопластов, армированных стекловолокнами, применяются найлон 6, полипропилен, полиэтилентерефталат, поливинилхлорид и другие полимеры. При использовании углеродных волокон физические свойства полимерной матрицы играют большую роль. В настоящее время изучается возможность использования для получения углепластиков не только найлона, но и полифениленсульфида, полиамидоимида, полиэфиркетонов и других термостойких полимеров. Как и для материалов, получаемых методом литья, для рассматриваемых материалов наиболее важными характеристиками являются теплостойкость, ударная вязкость, атмосферостойкость, хемостойкость, способность к последующей обработке (склеивание, окраска, металлизация, типографская печать) и другие характеристики.

в высоких значениях удельной прочности и ударной вязкости материала. Подобно металлам они обладают способностью к пластической деформации, что препятствует хрупкому характеру разрушения. Демпфирующие характеристики армированных пластиков на основе арамидных волокон в 4-5 раз выше, чем те же характеристики углепластиков (табл. 8.5, рис. 8.2). Они обладают также рядом других свойств, которые не могут быть достигнуты при использовании углеродных волокон. Поэтому арамидные волокна представляются весьма перспективными для практического применения.

жгутов, состоящих из 1000, 3000,6000, 10 000 и большего числа элементарных непрерывных волокон. Кроме того, выпускаются ткани из этих волокон, а также жгуты, состоящие из еще большего числа элементарных волокон. При использовании углеродных волокон для армирования пластмасс проводят обработку их поверхности с целью улучшения взаимодействия волокон и матрицы. С этой же целью, а также для улучшения технологических свойств нитей и жгутов и эксплуатационных характеристик углепластиков поверхность волокон подвергается шлихтованию или аппретированию. Для армирования термопластичных матриц используют рубленые волокна размером от нескольких миллиметров до 1-2 см.1) Углеродные волокна на основе обычных пеков представляют собой пучки из множества элементарных волокон длиной до 20—30 см и диаметром от долей микрометра до нескольких микрометров или образуют хлопкообразный мат с хаотичным расположением волокон.

Обработка поверхности волокон, используемых для армирования пластмасс. Чтобы армированные углеродными волокнами пластмассы, т. е. углепластики, обладали высокими механическими характеристиками, необходимо обеспечить прочность адгезионной связи между углеродными волокнами и полимерной матрицей, достаточную для передачи напряжения от волокна к волокну. Однако поверхность углеродных волокон, образовавшихся в процессе карбонизации или графити-зации, характеризуется слабой адгезией к ней полимерной матрицы. Следовательно, при использовании углеродных волокон для армирования пластмасс необходимо проводить обработку их поверхности с целью повышения адгезии. Обработка поверхности представляет собой обычно слабое окисление поверхности волокон, не снижающее их прочностных характеристик. Окисление осуществляют, например, в жидкости электролитическим методом [14] . '

Термопластичные смолы, используемые для получения препрегоа и листов для холодного штампования. Как и для литьевых термопластов, при получении препрегов и листов для холодного штампования важно, чтобы связующее могло приникать в межволоконное пространство пучков углеродных волокон. С этой точки зрения наиболее подходящими являются полимеры с низкой вязкостью, такие, как найлон, полиэтилентерефталат, полифениленсульфид и т. д. При высокой вязкости полимеров можно получать армированные пластики "мокрым" методом, используя соответствующие растворители. Пластики на основе углеродных волокон еще находятся в стадии разработки, а для получения термопластов, армированных стекловолокнами, применяются найлон 6, полипропилен, полиэтилентерефталат, поливинилхлорид и другие полимеры. При использовании углеродных волокон физические свойства полимерной матрицы играют большую роль. В настоящее время изучается возможность использования для получения углепластиков не только найлона, но и полифениленсульфида, полиамидоимида, полиэфиркетонов и других термостойких полимеров. Как и для материалов, получаемых методом литья, для рассматриваемых материалов наиболее важными характеристиками являются теплостойкость, ударная вязкость, атмосферостойкость, хемостойкость, способность к последующей обработке (склеивание, окраска, металлизация, типографская печать) и другие характеристики.

в высоких значениях удельной прочности и ударной вязкости материала. Подобно металлам они обладают способностью к пластической деформации, что препятствует хрупкому характеру разрушения. Демпфирующие характеристики армированных пластиков на основе арамидных волокон в 4—5 раз выше, чем те же характеристики углепластиков (табл. 8.5, рис. 8.2). Они обладают также рядом других свойств, которые не могут быть достигнуты при использовании углеродных волокон. Поэтому арамидные волокна представляются весьма перспективными для практического применения.

целесообразным поддерживать на уровне 91,4 ... 106,7 м/мин. Для обеспечения более точной намотки, особенно при использовании углеродных и арамидных волокон, обычно применяют скорости 15,2 ... 30,5 м/мин.

Очевидно, что при использовании более жестких углеродных волокон ошибка будет еще больше. При использовании углеродных волокон типа II желательно увеличивать отношение расстояния между опорами к ширине до очень высоких значений (100: 1) для получения более точных значений действительного модуля упругости при изгибе. Ниже приведены результаты испытаний на изгиб слоистого эпоксикарбоволокнита, содержащего 71 % (масс.) углеродных волокон типа II, ориентированных в одном направлении, хорошо иллюстрирующие те различия в модуле упругости, которые наблюдаются вследствие сдвиговых деформаций при уменьшении отношения расстояния между опорами к ширине образцов:




Рекомендуем ознакомиться:
Использования возможностей
Использования установки
Использованием экспертных
Использованием электронных
Использованием дополнительных
Использованием информации
Использованием математических
Использованием механических
Использованием параметров
Использованием процедуры
Индивидуального остаточного
Использованием соотношений
Использованием специального
Использованием выражений
Использованием универсальных
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки