Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Жесткость конструкции



ЖЕСТКОСТЬ КОНСТРУКЦИЙ

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЖЕСТКОСТЬ КОНСТРУКЦИЙ

Жесткость конструкций определяют следующие факторы:

Факторы, определяющие жесткость конструкций........ . 205

Сводчатые, арочные, выпуклые, скорлупные формы уменьшают усадочные напряжения, улучшают условия отливки и увеличивают прочность деталей вследствие увеличения моментов сопротивления сечений. Повышается жесткость конструкций, что особенно важно для отливки из сплавов с низким модулем упругости (серые чугуны, легкие сплавы).

Устойчивость и жесткость конструкций в поперечном направлении может обеспечиваться как рамой, образованной жестким сопряжением ригелей с колоннами, так и постановкой поперечных связей (связевая схема). В случае, когда по условиям конструктивного оформления узлов примыкания ригелей и связей к колоннам эти узлы передают опорные моменты, образуется комбинированная схема, которая называется рамно-связевой (рис.2.1). Использование связевых и рамно-связевых схем каркаса позволяет существенно увеличить их поперечную жесткость, уменьшить

М. с. являются самым легким конструкционным металлич. материалом. Уд. вес их в зависимости от состава находится в пределах 1,76—2,0 г/см3, примерно в 4 раза меньше стали ив 1,5 раза меньше алюминия и его сплавов. Использование М. с. позволяет уменьшить вес и значительно повысить жесткость конструкций. Относит, жесткость при изгибе двутавровых балок равного веса и одинаковой ширины для стали равна 1, для алюминия — 8,9, а для магния — 18,9. Литейные М. с. по уд. прочности при комнатной темп-ре превосходят алюминиевые литейные сплавы, высокопрочные чугуны и нек-рые марки сталей. Сравнительные свойства магниевых, алюминиевых сплавов, сталей и чугуна приведены в табл. 4—10.

5. Сверхлегкие конструкционные сплавы. Сверхлегкие конструкционные сплавы созданы па основе магния или алюминия посредством легирования их самым легким металлом —литием (Li; удельный вес 0,53 Г/см3, Тсолидус= 186 °С). Такое легирование не только снижает удельный вес сплава, но и, что самое важное, улучшает пластические свойства (снижается температура, допускающая обработку давлением) и повышает модуль упругости, обеспечивая тем самым большую жесткость конструкций, изготавливаемых из магниеволитиевых сплавов (МЛС), по сравнению с жесткостью конструкции того же веса из других металлических материалов, включая сталь и титан. Удельный вес заключен в пределах 1,3—1,65 Г/см3; это ниже удельного веса промышленных магниевых

Нужно подчеркнуть также возможность отливать из чугуна заготовки деталей весьма сложных конструктивных форм, уменьшая количество соединений и стыков в узлах машин и тем' самым обеспечивая большую жесткость конструкций.

б) Повышение жесткости заготовок. Жесткость конструкций заготовок деталей имеет решающее значение при их механической, обработке с точки зрения сохранения правильности форм, достижения требуемой точности размеров и уменьшения трудоемкости на основе повышения режимов резания.

ным управлением второго поколения, предусматривающих возможность выполнения сложных технологических операций, требующих большого числа инструментов. Эти станки рассчитаны на параллельную и параллельно-последовательную обработку, имеют большую жесткость конструкций и более высокую мощность двигателя. Большинство станков обеспечивает различную точность обработки.

Так, жесткость конструкции определяется таким свойством материала, как модуль нормальной упругости (Е), и размеры изделия определяются его значением и величиной допустимой упругой деформации.

Кривошипные прессы имеют постоянный ход, равный удвоенному радиусу кривошипа. Поэтому в каждом ручье штампуют за один ход пресса, и производительность штамповки на прессах выше, чем на молотах. Наличие постоянного хода приводит к большей точности поковок по высоте, а высокая жесткость конструкции пресса, отсутствие ударов и сотрясений делают возможным применение направляющих колонок у штампов, что практически исключает сдвиг. Штамповочные уклоны у поковок также меньше, так как на прессах предусмотрены выталкиватели. При штамповке на кривошипных прессах имеются большие возможности для механизации и автоматизации процесса, чем при штамповке на молотах.

Как отмечалось ранее, разрушения делят на хрупкие и вязкие. Промежуточным между ними является квазихрупкое разрушение, как наиболее часто встречающееся в реальных условиях эксплуатации конструкций. Заметим, что хрупкие разрушения реализуются не только в (природно) хрупких материалах. При определенных условиях пластичные стали могут разрушаться по механизму хрупкого разрушения в результате действия ряда охрупчивающих факторов, которые можно разделить на три основные группы: механические (большая жесткость конструкции и напряженного состояния, локальное стеснение деформаций в дефектах и концентраторах напряжений, механическая неоднородность, скорость нагружения и цикличность); внешняя среда (коррозия, радиация, низкая температура); структурные изменения (деформационное старение, распад метастабильных фаз и др.).

Коли сварку производить после полного завершения сборки, то пространственная жесткость конструкции будет способствовать уменьшению сварочных деформаций. Однако доступность некоторых соединений при этом может стать ограниченной. Чередование сборочных и сварочных операций при изготовлении конструкции путем наращивания отдельных элементов облегчает доступность соединений, но нередко способствует увеличению деформаций от сварки. Общей сборке сложной конструкции может предшествовать сборка и сварка относительно простых узлов, обладающих пространственной жесткостью, соединения которых легко доступны для сварки.

Рамы представляют собой объемную пространственную конструкцию, предназначенную для соединения отдельных деталей и механизмов в единый агрегат. Одно из главных требований, предъявляемых к рамам,— жесткость конструкции. Поэтому входящие в состав сварной рамы балочные заготовки соединяют друг с другом жестко либо непосредственно, либо с помощью вспомогательных элементов жесткости. Размеры рам и их конструктивное оформление весьма разнообразны, поэтому различны и методы получения балочных заготовок.

Кроме того, нельзя рассматривать деталь изолированно, заменяя действие сопряженных деталей сосредоточенными или распределенными силами. На самом деле сопряженные детали воспринимают значительную часть нагрузок, влияя на прочность и жесткость конструкции в целом.

В машинах, линейные размеры которых зависят только от прочности материалов (например, редукторы), применение высокопрочных материалов позволяет наряду с уменьшением сечений уменьшить длину деталей и габариты конструкции в целом. В данном случае жесткость конструкции не снижается от применения высокопрочных материалов.

нагруженных одинаковой силой Р: при растяжении-сжатии d2/l - const, при изгибе d*jP = const. На жесткость конструкции косвенно влияет прочность материала. При прочих равных условиях деформации пропорциональны напряжениям. Но величину напряжений принимают, как правило, пропорцнональной'прочности материала; напряжения представляют собой отношение предела прочности (или предела текучести) к коэффициенту надежности. Следовательно, чем выше прочность материала, тем больше величина принимаемых напряжений и при прочих равных условиях больше деформация системы. Напротив, чем меньше запас прочности и ближе величина действующих в системе напряжений к пределу прочности, тем больше деформация и меньше жесткость системы.

При конической форме (рис. 98, в, г), приближающей конструкцию к ферменной (см. рис. .95), стенки конуса, расположенные в плоскости действия изгибающего момента, работают: верхние на растяжение^ а нижние подобно подкосу — на сжатие. Боковые стенки испытывают преимущественно изгиб; их жесткость соизмерима с жесткостью верхних ц нижних стенок. Следовательно, при конической форме стенки отсека полностью включаются в работу; прочность и жесткость конструкции увеличиваются.

На рис. 132 показано (примерно в порядке исторической последовательности) усиление конструкции рядных двигателей внутреннего сгорания. В двигателе 1 с1 отдельными цилиндрами жесткость конструкции определяется только жесткостью картера. При изгибе силами, возникающими при вспышках, картер деформируется, а вместе с ним деформируется и двигатель в целом. Более жесткой является полублочная конструкция 2,

Выбор диаметра крепежных болтов и шага их расположения зависит от многих факторов, главными из которых являются условия работы, материал деталей и жесткость конструкции. Требования совершенно различны для соединений, подверженных действию небольших статических нагрузок и силовых соединений, испытывающих высокие циклические и динамические нагрузки, работающих под давлением и нуждающихся в полной герметичности.




Рекомендуем ознакомиться:
Жаростойких никелевых
Жаростойкость окалиностойкость
Желательном направлении
Желательно определить
Желательно применение
Желательно размещать
Желательно устанавливать
Железнодорожных крестовин
Железнодорожной платформы
Жаропрочные аустенитные
Железного электрода
Железобетонных фундаментов
Железографитовые подшипники
Желудочно кишечного
Жесткость циркуляционной
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки