Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Критической температуры



Закаливаемость стали можно оценить, изучая кинетику распада аустенита. На рис. 115 представлена схема'диаграммы изотермического распада аустенита и нанесены кривые, соответствующие различным скоростям охлаждения металла. Скорость охлаждения, выраженная кривой 2, характеризует максимальную скорость охлаждения, повышение которой приведет к частичной закалке стали. Ее называют первой критической скоростью охлаждения. При скорости охлаждения по кривой 3 наступает полная закалка (100% мартенсита). Ее называют второй критической скоростью охлаждения. Кривая 1 характеризует скорость охлаждения, при которой отсутствует закалка.

Минимальная скорость охлаждения, необходимая для переохлаждения аустенита до мартенситного превращения, называется критической скоростью закалки. Чтобы закалить сталь, ее следует охлаждать со скоростью не меньшей, чем критическая. Чем

де случаев сплавы достигают максимальной коэрцитивной силы уже в литом состоянии или после нагрева между 1000°С и точкой плавления и последующего охлаждения с регламентированной скоростью (например, 10— 20°С в секунду) (рис. 402,а). В то же время в результате резкой закалки получается пониженная коэрцитивная сила, которую не удается повысить отпуском до значений, получаемых при закалке со средней скоростью охлаждения (рис. 402,6). Скорость охлаждения, обеспечивающая получение максимальной коэрцитивной силы, называется критической скоростью охлаждения.

Применяют также сплавы N;—А1 с добавками кремния (1—2%). Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукции (400—500 Гс) и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам Fe—Ni—А1 позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с 22% Ni до 6% Си повышает Нс без снижения Вг. Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам (15—24% Со), которые подвергаются так называемой закалке в магнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300°С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть не менее 120 000 А/м) и так охлаждают до температуры ниже 500°С. Дальнейшее охлаждение проводят обычно на воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.

При быстром охлаждении fS-фаза переохлаждается и распад ее сопровождается образованием более дисперсных частиц oc + Y (т- с- эвтектондная смесг.-по мере увеличения скорости охлаждения становится более дисперсной и твердой). Скорость распада твердого раствора р зависит от температуры v может быть представлена С-образной кривой (рис. 449). Сходство термической обработки алюминиевых бронз с термической обработкой стали дополняется тем, что при охлаждении с критической скоростью (З-фаза превращается-в игольчатую структуру. Превращение происходит пи мартеиситному типу.

рис. 116). Превращение аустенита в мартенсит не идет до конца, поэтому в закаленной стали наряду с мартенситом всегда присутствует в некотором количестве остаточный аустенит (рис. 117, в). Минимальную скорость охлаждения VK (см рис 116), при которой весь аустенит переохлаждается до точки /И„ и превращается в мартенсит, называют критической скоростью закалки.

Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8—12 %-ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике. Для стали с низкой критической скоростью закалки рекомендуются растворы NaOH повышенной концентрации (30—50 %).

Под прокаливаем остью понимают способность стали получать закаленный слой с мартен сити о и или троосто-мартен сит ной структурой и высокой твердостью, простирающейся на ту или иную глубину. Про-каливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если действительная скорость охлаждения в сердцевине изделия будет превышать критическую скорость закалки ук (рис. 129, III — УК), то сталь получит мартенситную структуру по всему сечению и тем самым будет иметь сквозную прокаливаемость.

В изделиях крупных сечений (диаметром свыше 15- 20 мм) механические свойства легированных сталей после закалки и отпуска выше, чем углеродистых. Особенно сильно повышаются предел текучести, относительное сужение и ударная вязкость. Это объясняется тем, что легированные стали обладают меньшей критической скоростью закалки, а следовательно, лучшей прокалива-емостью. Кроме того, после термической обработки они имеют более-мелкое зерно и более дисперсные структуры. Из-за большей про-каливаемости и меньшей критической скорости закалки при замене углеродистой стали легированной оказывается возможным проводить закалку деталей в менее резких охладителях — в масле, на воздухе, что уменьшает деформацию изделий и опасность образования трещин. Поэтому легированные стали используют для изготовления не только крупных деталей, но и для изделий небольшого сечения, имеющих сложную форму. Чем выше в стали концентрация легирующих элементов, тем выше ее прокаливаемость.

Минимальная скорость охлаждения, при которой образуется только мартенсит, является критической скоростью закалки

Полная закалка осуществляется при нагреве стали выше линии GS?. После охлаждения с критической скоростью закалки у всех углеродистых сталей образуется структура мартенсита.

родеформаций кристаллической решетки сплава. Также видно, что это повышение начинается вслед за существенным снижением накопленных микродеформаций кристаллической решетки (при 2 х 104 циклах) до уровня, примерно равного приобретенному на первых циклах нагружения в области циклической ползучести (примерно 5 х 102 циклов). Снижение уровня накопленных микродеформаций кристаллической решетки, очевидно, связано с выделением части запасенной упругой энергии искажений кристаллов металла при аннигиляции взаимодействующих дислокаций или их перестройке в конфигурации с низкой энергией (возврат). При локальной перестройке дислокаций за счет их переползания путем поперечного скольжения высвобождается значительная энергия. Это может произойти только при достаточной механической активации металла на предыдущем упрочняющем цикле. Такой процесс может быть сравнен с процессом рекристаллизации, когда за счет термической активации пластически деформированного металла путем нагрева выше некоторой критической температуры образуются новые, относительно свободные от дислокаций зерна. Таким образом, в процессе усталости проявляется не только повреждающий эффект, связанный с накоплением микродеформаций кристаллической решетки и упрочнением металла, но и обратный разупрочняющий эффект, сопровождающийся выделением накопленной упругой энергии и переходом системы в термодинамически более устойчивое состояние.

Трудности сварки его связаны с повышенной склонностью к образованию кристаллизационных трещин в связи с образованием различных легкоплавких эвтектик (Мо03 -- М()О, -- М0; Тпп — 780° С), а также охрупчплапием металла шва и околошовной зоны из-за возможного попадания газов атмосферы либо других загрязняющих веществ. Чуствителыюсть молибдена к загрязнениям различного рода видна па рис. 16(5, па котором показано изменение критической температуры перехода в хрупкое состояние в зависимости от содержания кислорода, азота и углерода. Наиболее резко влияет кислород; всего 0,0002% О2 повышает 7\,p до 200° С.

отжиг в специальных атмосферах). При таком отжиге значительная часть углерода выгорает, а в поверхностном слое глубиной до 1,5—2,0 мм получается полное обезуглероживание. Обычно при таком отжиге выдержку ниже критической температуры не дают, и в металлической основе сердцевины получается много перлита.

Вторая группа. Если в сплавах при нагреве происходит фазовое превращение (аллотропическое превращение, растворение второй фазы и т. д.), то нагрев выше некоторой критической температуры вызывает изменение в строении сплава. При последующем охлаждении произойдет обратное превращение. Если охлаждение достаточно медленное, то превращение будет полное и фазовый состав будет соответствовать равновесному состоянию.

Эта предельная толщина Апред существует лишь в том случае, когда температура Т ниже значения WV39&. Выше этой критической температуры последнее уравнение неприменимо.

Далее покажем возможность оценки определения критической температуры хрупкости.

Понижение температуры практически не изменяет сопротивления отрыву SOT (разрушающего напряжения), но повышает сопротивление пластической деформации сгт (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка t пересечения кривых 5ОТ и сгт, соответствующая температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/,,. х). Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).

нается после достижения некоторой критической температуры Ги.р.э По значению Г„.р.3 различаются стали природно-крупнозер-нистые и природно-мелкозернистые. По данным практики термической обработки Т„р.здля этих сталей составляет 1203 К и 1273... 1373 К соответственно*. Значение Ги.р.3 зависит от состава стали, наличия примесей и метода раскисления. Элементы, образующие труднорастворимые карбиды (Ti, V, Mo, W и др.), оксиды, сульфиды и нитриды (СЬ, S, N2, A1), а также поверхностно-активные (В), концентрирующиеся на границах зерен, повышают Ги.р.3. Рост зерна происходит в результате собирательной рекристаллизации, ведущий процесс которой — миграция границ зерен. Мелкодисперсные частицы карбидов и неметаллических включений замедляют миграцию границ и препятствуют росту зерна. Для каждой стали характерен определенный предельный размер зерна.

При превышении температурой порогового значения Т,^ (первой критической температуры) металл переходит в вязкое состояние. Долгое время считалось, что микромеханизм вязкого разрушения представляет собой процесс слияния пор, возникающих около частиц второй фазы [47]. Однако электронно-микроскопические и рентгеновские исследования микроразрушения кристаллических материалов выявили более сложный механизм развития трещины, включающий две стадии повреждаемости. На первой стадии при незначительной степени деформации образуются субмикроскопические кристаллографические трещины, обусловленные эволюцией дислокационной структуры. Затем эти зародышевые трещины сливаются в критическую трещину, что означает переход от дислокационного механизма повреждаемости к вакансионному, т. е. образованию пор около групп вакансий, а при высоком уровне напряжений-около частиц второй фазы [47].

Одной из основных причин появления трещин в конструкциях является охрупчивание металла во время эксплуатации и, как следствие, уменьшение способности материала к релаксации напряжений за счет пластических деформаций. Неучет данного фактора может привести к тому, что даже при температурах эксплуатации выше критической температуры вязко-хрупкого перехода разрушение может носить хрупкий характер. Поэтому при анализе текущего состояния ответственной стальной конструкции определение прочностных свойств материала является важнейшим этапом в общем алгоритме оценки.

Механические свойства [1] значения критической температуры структурной хладноломкости (t0>5) для некоторых сталей




Рекомендуем ознакомиться:
Коромысла относительно
Коронирующие электроды
Короткими участками
Короткому замыканию
Корпусных элементов
Коррекции программы
Корректирующего устройства
Корректирующих коэффициентов
Корреляции коэффициент
Корреляционных уравнений
Концентрация диффундирующего
Корреляционном приближении
Коррозийного воздействия
Коррозионные испытания
Концентрация ингибиторов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки