Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Концентраторов напряжения



В качестве исследуемых объектов использовались образцы прямоугольного сечения из стали 17Г1С с концентратором напряжения в виде V-образного надреза глубиной 1 мм. Частота нагру-жения 1 Гц. Для наблюдения за кинетикой развития трещины боковые поверхности образцов полировались. Наблюдение за ростом трещин осуществлялось с помощью измерительного устройства на базе стереоскопического микроскопа МБС-9.

при симметричном цикле нагружения, определяется эффективным коэффициентом концентрации напряжений Ко -'~ o_i/o_1H, где <т_! 11 °'-ш — пределы выносливости образцов гладкого и с надрезом (концентратором напряжения).

повреждений сопровождается изменением механических и электрофизических свойств металла конструкции. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции [17, 18, 33]. В качестве примера на рисунке 3.5.1 представлена картина распределения напряжений, полученная в результате расчета напряженно-деформированного состояния испытательного образца с концентратором напряжения. Расчет произведен применением комплекса программ для инженерного моделирования электромагнитных, тепловых и механических задач методом конечных элементов ELCUT.

Для исследования параметров гармоник сигнала при растяжении плоских образцов с концентратором напряжения - боковым пропилом на поверхность образца была нанесена сетка, в узлах которой производились измерения.

Рисунок 3.5.4 - Топография распределения амплитуд гармонических составляющих сигнала накладного вихретокового преобразователя при сканировании поверхности нагруженного плоского образца с концентратором напряжения в виде бокового пропила: а - амплитуда 1--й гармоники; в- 2- и гармоники; б - 3- и гармоники; г - 5- я гармоники

Для построения поверхности распределения амплитуд гармонических составляющих была разработана программа в системе MatLab. При этом были созданы матрицы параметров гармоник и координат точек, нанесенных на поверхность образца. По значениям матриц производилась интерполяция с помощью функции griddata [99]. На рисунке 3.5.4 показаны картины распределения амплитуд 1-й, 2-й, 3-й и 5-й гармоник вдоль поверхности плоского нагруженного образца из стали 16ГС с концентратором напряжения в виде бокового пропила. В ненагруженном состоянии образца изменения амплитуд гармонических составляющих незначительны. Значительные изменения присутствуют у краев пропила, что связано с влиянием краевого эффекта. Причем амплитуды различных гармоник по-разному реагируют на неоднородности поверхности и внутренней структуры образца. После приложения нагрузки отклик в зоне зарождения трещины присутствует у всех гармоник.

Рис. 54. Кривые усталости легированной стали 34 CrNiMo 6 с различным концентратором напряжения

повреждений сопровождается изменением механических и электрофизических свойств металла конструкции. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции [17, 18, 33]. В качестве примера на рисунке 3.5.1 представлена картина распределения напряжений, полученная в результате расчета напряженно-деформированного состояния испытательного образца с концентратором напряжения. Расчет произведен применением комплекса программ для инженерного моделирования электромагнитных, тепловых и механических задач методом конечных элементов ELCUT.

Для исследования параметров гармоник сигнала при растяжении плоских образцов с концентратором напряжения - боковым пропилом на поверхность образца была нанесена сетка, в узлах которой производились измерения.

Рисунок 3.5.4 - Топография распределения амплитуд гармонических составляющих сигнала накладного вихретокового преобразователя при сканировании поверхности нагруженного плоского образца с концентратором напряжения в виде бокового пропила: а - амплитуда 1--Й гармоники; е- 2- и гармоники; б - 3- и гармоники; г - 5- и гармоники

Для построения поверхности распределения амплитуд гармонических составляющих была разработана программа в системе MatLab. При этом были созданы матрицы параметров гармоник и координат точек, нанесенных на поверхность образца. По значениям матриц производилась интерполяция с помощью функции griddata [99]. На рисунке 3.5.4 показаны картины распределения амплитуд 1- и, 2- и, 3- и и 5- и гармоник вдоль поверхности плоского нагруженного образца из стали 16ГС с концентратором напряжения в виде бокового пропила. В ненагруженном состоянии образца изменения амплитуд гармонических составляющих незначительны. Значительные изменения присутствуют у краев пропила, что связано с влиянием краевого эффекта. Причем амплитуды различных гармоник по-разному реагируют на неоднородности поверхности и внутренней структуры образца. После приложения нагрузки отклик в зоне зарождения трещины присутствует у всех гармоник.

.фах напряжения. Более того, в ряде случаев наблюдалось растворение таких концентраторов напряжения, как риски в очаге разрушения, а трещины зарождались в стороне от них. Данный факт, очевидно, может быть объяснен тем, что критические напряжения, необходимые для протекания КР, имеют небольшие значения и находятся ниже величин расчетных рабочих напряжений в стенке трубы, однако даже таких напряжений, сопровождающихся воздействием электрохимического фактора, бывает достаточно для разрыва межатомных связей. Этому также способствуют внутренние напряжения первого и второго рода, возникающие при производстве труб и сооружении трубопроводов.

Использование указанных моделей для прогнозирования долговечности реальных магистральных трубопроводов в условиях МКУ затруднено. Это связано, с одной стороны, с тем. что модель Коффина - Мэнсона, позволяющая прогнозировать усталостную долговечность при наличии геометрических концентраторов напряжения, не пригодна для описания стадии распространения

Предел выносливости снижается при наличии концентраторов напряжения. Чувствительность он к концентраторам напряжений

Обычно при определении запаса прочности учитывают степень надежности материала, точность расчетной схемы, степень динамичности нагрузки и величину возможной перегрузки, степень ответственности детали, условия работы детали, наличие концентраторов напряжения и т. д. Количество учитываемых факторов и соответствующих им частных коэффициентов колеблется от одного до десяти.

кой привлеки короозионных трещин к имеющийся геометрическим концентраторам напряжения (сварные швы, задиры, царапины), что отличает данный вид разрушения от коррозионной малоцикловой усталости (на МТ зарождается и разливается только в концентраторах напряли. -ния). Более того, в ряде случаев наблюдалось растворение таких концентраторов напряжения, как риски в очаге резрушения (МГ "Урен гой - Ц^нтр I"), и трещины зарождались в стороне от концелтрато-ров. Данный факт, очевидно, может быть объяснен тем, что критические напряжения, необходимые для протекания этого вида коррози-онно - механического разрушения - КР, имеют небольшие значения и находятся ниже величин расчетных рабочих напряжений в стенке трубы (не превышают предела текучести стали). Следует отметить, что при расчете МТ не учитываются внутренние напряжения первого и второго рода, возникающие при производства труб, к.торые, как это было показано в УГНТУ, имеюа достаточно высокие значения. Поэтому трещины зарождаются в очаге разрушения бее видимых дефектов на меаалле , имеющем достаточный уровень напряжений для протекания КР (физические каиэнтраторь напряжения).

Как видно иэ таблицы, отсутствует взаимно одновначное соответствие количественного содержания СВ в стали с эффективными скоростями роста трещин. Вместе с тем. явно просматривается существенно более высокие значения скоростей роста трещин на сталях контролируемой прокатки групп прочности Х70, поставляемы*, по импорту. Данный факт может быть объяснен тем, что с увеличение») прочности таких сталей даже небольшое количество неметаллических включений может привести к образованию внутренних концентраторов напряжения и, соответственно, уменьшить стойкость стали к распространению трещин, развивающихся, очевидно, вследствие превалирования механического фактора. Это подтверждает ранее высказанную мысль о малом вкладе электрохимического фактора в раввитие КР не таких сталях.

ческой труба испытывает циклически изменяющуюся нагрузку с широким спектром частот. При этом, кроме высокочастотной составляющей спектра, обусловленно. работой компрессорных станций, присутствуют низкочастотные колебания, возникающие в результате изменения температуры стенки трубы, биений, изменения режимов перекачки и т. д.. что может вызва1., малоцикловую коррозионную усталость труб (МКУ). Причем корровионно - усталостные трещины имеют жесткую привязку к концентраторам напряжения в виде царапин, вмятин, сварных швов и т.д. Вместе с тем явление КР проявляется при оиеиифическом воздействии карбонат - бикарбонатной среды, катодной поляризации и статически приложенных нагрузок на участках трубопровода с поврежденной изоляцией. Причем в результате изучения очагов разрушения по причине КР не наблюдалось привязки трещин к концентраторам напряжения, хотя по своей топографии трещины КР и коррозионной усталости близки. Более того, в ряде случаев в очагах разрушения наблюдалось даже растворение концентраторов напряжения в виде царапин. Несмотря на этот очевидный факт вопрос о КР как о самостоятельном явлении продолжает оставаться открытым. Поэтому в целях идентификации явления КР, в лабораторных условиях УГНТУ и были проведены МКУ исследования на образцах труиной стали 17Г1С в карбонат - бикарбонатной среде.

Коррозионно - усталостные испытания проводились в растворе 1 в. МаНСОэ + 1 н. КааСОд при коэффициенте асимметрии цикла К близком к нулю, на образцах с V - образным надрезом глубиной 1 мм. с частотой нагружения 1 Гц, на воздухе и в модельной среде как без поляризации, так и при наложении поляризации величиной минус 0,82. 0,70. 0,62 В (ХСЭ), при уровне деформации 0.21Х. Выбор ука-канного уровня деформации был обусловлен наличием геометрических концентраторов напряжения на поверхности реальных труб, в которых, в соответствии с результатами проведенных авторами исследований (см. рис. 2.2), наблюдается высокая механохимическая актив-пост! стали в указанной сред*» при напряжениях, превышающих предел текучести. Коэффициент интенсивности напряжения равяитывалс). р соответствии с общепринятой методикой. Подбор эмпирических коэф-фш'иентов уравнения Пэриса проводился с помощью анализа 27...49 экспериментальных точек на каждую кривую на ЭВМ методом наименьших квадратов. При этом была обнаружена высокая степень корреляции (по параметру т) с результатами исследований, нроведеннкх !.а-

Измерители остаточного магнитного поля. Определением областей спонтанной намагниченности можно не только выявлять места с предполагаемыми нарушениями сплошности, но и прогнозировать эксплуатационную стойкость конструкций. Области спонтанной намагниченности возникают в зонах максимальных внутренних напряжений, вызванных одновременным действием внутреннего давления среды, самокомпенсации температурных расширений и наличием конструктивных концентраторов напряжения. Прибор МФ-23Ф позволяет измерять разность значений магнитной индукции от -2 до +2 мТл с допускаемой основной относительной погрешностью до ±5 %.

Измерители остаточного магнитного поля. Определением областей спонтанной намагниченности можно не только выявлять места с предполагаемыми нарушениями сплошности, но и прогнозировать эксплуатационную стойкость конструкций. Области спонтанной намагниченности возникают в зонах максимальных внутренних напряжений, вызванных одновременным действием внутреннего давления среды, самокомпенсации температурных расширений и наличием конструктивных концентраторов напряжения. Прибор МФ-23Ф позволяет измерять разность значений магнитной индукции от -2 до +2 мТл с допускаемой основной относительной погрешностью до ±5 %.

Влияние усталостной прочности металла и, следовательно, надежность и долговечность детали машин или конструкции зависят от многих факторов, еще недостаточно полно изученных. Основными из них являются условия нагружения и величины рабочих и остаточных напряжений, а также наличие у деталей концентраторов напряжения. Все их необходимо учитывать при проектировании машин и механизмов. Это свидетельствует о наличии возможности повышения долговечности многих деталей за счет придания им соответствующей формы увеличением радиуса галтелей, более плавных переходов в размерах сечения, применения разгружающих канавок, повышенной чистоты обработки поверхности и т. д.




Рекомендуем ознакомиться:
Критических потенциалов
Критических температурах
Критическим давлением
Критическим напряжением
Критической концентрацией
Критической температуры
Критическое напряжение
Критическое скольжение
Критического отношения
Критическому коэффициенту
Концентрации фурановые
Кривизной поверхности
Кривошипа постоянна
Кривошипном механизме
Кривошипно коромысловый
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки