Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Кондуктивного теплообмена



Среди процессов сложного теплообмена различают радиацион-но-конвективный и радиационно-кондуктивный теплообмен.

деляется их суммой. Радиационно-кондуктивный теплообмен в плоском слое для других исходных условий рассмотрен в [Л. 5, 117, 163]; для цилиндрического слоя — в [Л. 116].

Так почему же в области, классифицируемой как кипящие слои крупных частиц, с ростом диаметра увеличиваются и максимальные коэффициенты теплообмена? Все дело в газоконвективном теплообмене. В слоях мелких частиц скорости фильтрации газа слишком малы, чтобы конвективная составляющая теплообмена могла себя «проявить». Но с увеличением диаметра зерен она возрастает. Несмотря на низкий кондуктивный теплообмен, в кипящем слое крупных частиц рост конвективной составляющей компенсирует этот недостаток.

Радиационно-кондуктивный теплообмен рассматривается применительно к плоскому слою ослабляющей среды. Решены две задачи. Первая — аналитическое рассмотрение радиационно-кондуктивного теплообмена в плоском слое среды без каких-либо ограничений в от-'ношении температур поверхностей слоя. При этом среда • и граничные поверхности предполагались серыми, а внутренние источники тепла в среде отсутствовали. Второе решение относится к симметричной задаче радиационно-кондуктивного теплообмена в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла внутри слоя. Результаты решения первой задачи

Глава четырнадцатая Радиационно-кондуктивный теплообмен

Радиационно-кондуктивный теплообмен, являющийся одним ш видов сложного теплообмена, имеет место в различных областях науки и темники (астро- и геофизика, металлургическая и стекольная промышленность, электровакуумная технология, .производство новых материалов и пр.). К необходимости изучения процессов радиационно-кондуктивного теплообмена приводят также задачи переноса энергии в пограничных слоях потоков жидких и газообразных сред и проблемы исследования теплопроводности различных полупрозрачных материалов.

14-2. Радиационно-кондуктивный теплообмен в плоском слое серой поглощающей среды без источников тепла

14-3. Радиационно-кондуктивный теплообмен в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла

Таким образом, на основании перечисленных и некоторых других, более частных работ становится очевидным, что радиационно-кондуктивный теплообмен в системах, содержащих объемные источники тапла, изучен явно недостаточно. В частности, не выяснено влияние селективности среды и граничных поверхностей, влияние анизотропии объемного и поверхностного рассеяния. В связи с этим автором было предпринято приближенное аналитическое решение задачи радиационно-коядуктивного теплообмена в плоском слоесре-

тнвный и конвективный переносы тепла. Частными случаями этого гаида теплообмена .являются: радиационный теплообмен в движущейся среде (при отсутствии кон-дуктивного переноса), радиационно-кондуктивный теплообмен в неподвижной среде (при отсутствии конвективного (переноса) и чисто 'конвективный теплообмен в движущейся среде, когда радиационный перенос отсутствует. Полная система уравнений, описывающих процессы радиационно-конвективного теплообмена, была рассмотрена и проанализирована IB гл. 12.

В уравнении (15-1) суммарный коэффициент теплоотдачи от потока к стенке канала может быть найден на основании (14-14) и (14-15). С этой целью рассмотрим в рамках принятой схемы процесс теплообмена текущей среды с граничной поверхностью как радиацион-но-кондуктивный теплообмен ядра потока и стенки канала через пограничный слой толщиной б. Приравняем температуру ядра потока средней калориметрической температуре среды в данном сечении, что можно сделать, учитывая малую толщину 'пограничного слоя по сравнению с диаметром канала. Считая в качестве одной из граничных поверхностей ядро потока [с температурой в данном сечении канала Т(х) и поглощательной способностью аг], а в качестве другой — "стенку канала (с температурой Tw и поглощательной способностью aw), рассмотрим процесс радиационно-кондуктивного теплообмена через пограничный слой. Применяя (14-14), получаем выражение для локального коэффициента теплоотдачи а в данном сечении:

Задачи радиационно-конвективного теплообмена даже для простых случаев обычно более трудны, чем задача радиационно-кондуктивного теплообмена. Ниже приведено приближенное решение [Л. 205] одной распространенной задачи радиационно-конвективного теплообмена. Существенные упрощения позволяют довести решение до конца.

Как показано в [Л. 88, 350], тензорное приближение при определенных условиях является более точным методом, открывающим новые возможности при исследовании процессов теплообмена излучением. В (Л. 351] предложенное тензорное приближение {Л. 88, 350] было использовано для решения комбинированной задачи радиа-ционно-кондуктивного теплообмена и дало хорошие результаты. В дальнейшем автором тензорное приближение было обобщено «а случай спектрального и полного излучения при произвольных индикатрисах объемного и поверхностного рассеяния в излучающих системах [Л. 29, 89].

Применяя итерационный способ решения задач сложного теплообмена, следует вначале задаться величинами Qpea.i по всем зонам и определить на электроинтеграторе описанного типа получающееся для принятого распределения Qpea.i (i=l 2,..., п) температурное поле, на основании которого вычисляется второе приближение всех величин <2рез,г с помощью разностных уравнений конвективного и кондуктивного теплообмена. Продолжая итерационный процесс до приемлемого совпадения величин Qpes.i на всех зонах, получаем решение задачи сложного теплообмена в зональной аппроксимации с применением электроинтегратора для определения радиационной составляющей процесса.

Радиационно-кондуктивный теплообмен рассматривается применительно к плоскому слою ослабляющей среды. Решены две задачи. Первая — аналитическое рассмотрение радиационно-кондуктивного теплообмена в плоском слое среды без каких-либо ограничений в от-'ношении температур поверхностей слоя. При этом среда • и граничные поверхности предполагались серыми, а внутренние источники тепла в среде отсутствовали. Второе решение относится к симметричной задаче радиационно-кондуктивного теплообмена в плоском слое селективной и анизотропно рассеивающей среды с источниками тепла внутри слоя. Результаты решения первой задачи

Как частные случаи из системы уравнений сложного теплообмена вытекают все отдельные уравнения, рассматриваемые в гидродинамике и теории теплообмена: уравнения движения и неразрывности среды, уравнения чисто кондуктивного, конвективного и радиационного теплообмена, уравнения радиационно-кондуктивного теплообмена в неподвижной среде и, наконец, уравнения радиационного теплообмена в движущейся, но нетепло-про-зодной среде.

Радиационно-кондуктивный теплообмен, являющийся одним ш видов сложного теплообмена, имеет место в различных областях науки и темники (астро- и геофизика, металлургическая и стекольная промышленность, электровакуумная технология, .производство новых материалов и пр.). К необходимости изучения процессов радиационно-кондуктивного теплообмена приводят также задачи переноса энергии в пограничных слоях потоков жидких и газообразных сред и проблемы исследования теплопроводности различных полупрозрачных материалов.

но рассчитать процесс радиационио-'кондуктивного теплообмена IB тех условиях, для которых справедливы полученные решения. Численные решения задачи дают наглядную .картину исследуемого процесса для (конкретных случаев, не требуя при этом введения многих ограничений, присущих приближенным аналитическим исследованиям. Как аналитические, так и численные решения, несомненно, являются известным (прогрессом в изучении процессов радиационно-тондуктивного теплообмена, несмотря на свой ограниченный и частный характер.

В настоящей главе рассматриваются два выполненных автором аналитических решения задачи радиацион-но-кондуктивного теплообмена в плоском слое среды. Первое решение рассматривает задачу при отсутствии ограничений в отношении температур, поглощательных способностей граничных поверхностей и оптических толщин слоя среды [Л. 89, 203]. Это решение выполнено методом итераций, причем среда и .граничные поверхности предполагаются серыми, а в объеме среды отсутствуют .источники тепла.

Рис. 14-1. Схема к решению задачи ра-диационно-кондуктивного теплообмена в плоском слое поглощающей и теплопроводной среды при отсутствии внутренних источников тепла в среде.

Наиболее детальное аналитическое исследование получила рассмотренная выше задача радиационно-кондуктивного теплообмена через слой серой, чисто поглощающей среды при задании температур серых граничных поверхностей слоя и при отсутствии источников тепла в самой среде. Задача радиационно-кондуктивного теплообмена слоя излучающей и теплопроводной среды с граничными поверхностями при наличии в объеме источников тепла рассматривалась в весьма ограниченном числе работ с принятием тех или иных допущений.

Впервые попытка учета внутренних источников тепла в процессах «радиационно-кондуктивного теплообмена была предпринята в [Л. 208], где рассматривалась задача переноса тепла излучением и теплопроводностью через слой серой, нерассеивающей среды с равномерным распределением источников по объему. Однако математическая ошибка, допущенная в работе, свела на нет полученные результаты.




Рекомендуем ознакомиться:
Криволинейную поверхность
Кручением называется
Кругового поперечного
Крупногабаритных конструкций
Крупногабаритной аппаратуры
Крупносерийное производство
Крупнозернистой структуры
Крутильные жесткости
Крутильная жесткость
Квадрэтическое отклонение
Квадратического отклонения
Квадратичной зависимостью
Концентрации коэффициент
Квадратных миллиметрах
Квадратным хвостовиком
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки