Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Конструкция применяется



Преобразователи для измерения коэрцитивной силы содержат намагничивающую систему, например,П-образный электромагнит с намагничивающей и размагничивающей обмотками, и нулевой индикатор, в качестве которого может выступать феррозонд или датчик Холла. После намагничивания контролируемого участка изделия и выключения тока в намагничивающей обмотке плавно увеличивают размагничивающий ток, пока сигнал нулевого индикатора не покажет отсутствие магнитного потока в контролируемом участке. Другая конструкция преобразователя для измерения коэрцитивной силы содержит встроенный сильный постоянный магнит, выполненный в виде подвижного щупа и снабженный пружиной, которая возвращает магнит в исходное (удаленное от листа) положение после касания им листа. Тангенциальная компонента остаточного поля, возбужденного намагниченным участком, которая в этих условиях намагничивания пропорциональна коэрцитивной силе, измеряется с помощью двух симметрично расположенных относительно намагниченной точки феррозондов. Феррозонды включены по схеме градиентомера для устранения влияния посторонних однородных полей. Система феррозондов легко вращается на 360°, позволяя измерить //с на любом участке и под любым углом к направлению проката [21].

Для уменьшения токов перемагничивания может быть использована конструкция преобразователя, изображенная на рисунке 3.3,13, г . Поток рассеяния такого преобразователя создается не сплошным зазором в сердечнике, а надрезом. Ширина и глубина надреза определяют перепад магнитных сопротивлений и локальность зоны контроля.

Важной задачей, которую необходимо решить при разработке малогабаритных преобразователей, является снижение величины тока возбуждения без снижения чувствительности. Для достижения этой цели короткозамкнутая обмотка преобразователя может быть выполнена из двух секций с неравным числом витков, расположенных на сердечнике диаметрально-противоположно и соединенных встречно [63]. Конструкция преобразователя представлена на рисунке 3.3.13, е. Ток, протекающий по корот-козамкнутой обмотке, определяется разностью ЭДС, наводимых в секциях при перемагничивании сердечника. Магнитный поток секции с большим числом витков направлен навстречу магнитному потоку в сердечнике, а магнитный поток, создаваемый секцией с меньшим числом витков, совпадает с потоком в сердечнике. Поля рассеивания обоих секций формируют импульсное магнитное поле, которое возбуждает импульсные вихревые потоки в электропроводящем объекте контроля. Встречное включение секций КЗО позволяет увеличить интенсивность поля рассеяния без увеличения магнитного сопротивления сердечника. Основная энергия магнитного потока рассеивания сосредоточена в зазоре между секциями, поэтому при анализе взаимодействия преобразователя с объектом контроля зазор может рассматриваться как прямоугольная катушка с высотой, равной высоте секции. Такая конструкция преобразователя позволяет перемагничивать сердечник по предельной петле гистерезиса при гораздо меньших значениях тока, чем у преобразователя с немагнитным зазором или короткозамкнутым витком, и соответственно при меньшем числе витков обмотки возбуждения, что позволяет

Отсутствие гальванической связи между выходными и входными цепями преобразователей, построенных на основе кольцевых ферритовых сердечников, позволяет включать в цепь КЗО последовательно несколько магниточувствительных элементов или ввести несколько КЗО с магнито-чувствительными элементами, работающими параллельно. Ферритовый сердечник при этом выполняет функции алгебраического сумматора [54, 55]. Такая конструкция преобразователя позволяет измерять ортогональные компоненты или градиент магнитного поля в заданной точке. Применение трех обмоток, подключенных к потенциальным электродам трех датчиков Холла, расположенных в пространстве ортогонально, позволяет определить модуль пространственного вектора магнитного поля. Измеряя сигнал с каждого датчика Холла по отдельности, можно найти проекции вектора на ортогональные оси, а затем определить пространственное расположение самого вектора.

При исследовании образцов прямоугольного сечения на растяжение, сжатие, циклические изгибающие нагрузки, ударную вязкость используются проходные преобразователи трансформаторного тала с прямоугольным поперечным сечением. Конструкция преобразователя показана на рисунке 5.4.2. На каркас 1 намотана измерительная обмотка 2. Поверх измерительной обмотки намотана возбуждающая обмотка 3. Концы обмоток посредством витой пары соединяются с измерительным комплексом. Исследуемый образец 4 вставляется в окно преобразователя. Для обеспечения равномерного намагничивания длина возбуждающей обмотки преобразователя должна быть много больше поперечного сечения образца.

Для снижения нестабильности акустического контакта применяют щелевой и имерсионный способы ввода колебаний. При щелевом способе конструкция преобразователя предусматривает поддержание постоянного слоя контактной жидкости толщиной порядка Я. Такой способ ввода применяют как при ручном, так и при автома-

левые НЭП предназначены для контроля изделий через слой контактной жидкости небольшой толщины, причем зазор обеспечивает конструкция преобразователя. ПЭП с переменным, углом, позволяют изменять угол ввода. Более подробно о ПЭП см. [4, 12].

Преобразователи для измерения коэрцитивной силы содержат намагничивающую систему, например,П-образный электромагнит с намагничивающей и размагничивающей обмотками, и нулевой индикатор, в ка-честве которого может выступать феррозонд или датчик Холла. После намагничивания контролируемого участка изделия и выключения тока в намагничивающей обмотке плавно увеличивают размагничивающий ток, пока сигнал нулевого индикатора не покажет отсутствие магнитного потока в контролируемом участке. Другая конструкция преобразователя для измерения коэрцитивной силы содержит встроенный сильный постоянный магнит, выполненный в виде подвижного щупа и снабженный пружиной, которая возвращает магнит в исходное (удаленное от листа) положение после касания им листа. Тангенциальная компонента остаточного поля, возбужденного намагниченным участком, которая в этих условиях намагничивания пропорциональна коэрцитивной силе, измеряется с помощью двух симметрично расположенных относительно намагниченной точки феррозондов. Феррозонды включены по схеме градиентомера для устранения влияния посторонних однородных полей. Система феррозондов легко вращается на 360°, позволяя измерить 7/с на любом участке и под любым углом к направлению проката [21 ].

Для уменьшения токов перемагничивания может быть использована конструкция преобразователя, изображенная на рисунке 3.3.13, г . Поток рассеяния такого преобразователя создается не сплошным зазором в сердечнике, а надрезом. Ширина и глубина надреза определяют перепад магнитных сопротивлений и локальность зоны контроля.

Важной задачей, которую необходимо решить при разработке малогабаритных преобразователей, является снижение величины тока возбуждения без снижения чувствительности. Для достижения этой цели короткозамкнутая обмотка преобразователя может быть выполнена из двух секций с неравным числом витков, расположенных на сердечнике диаметрально-противоположно и соединенных встречно [63]. Конструкция преобразователя представлена на рисунке 3.3.13, е. Ток, протекающий по корот-козамкнутой обмотке, определяется разностью ЭДС, наводимых в секциях при перемагничивании сердечника. Магнитный поток секции с большим числом витков направлен навстречу магнитному потоку в сердечнике, а магнитный поток, создаваемый секцией с меньшим числом витков, совпадает с потоком в сердечнике. Поля рассеивания обоих секций формируют импульсное магнитное поле, которое возбуждает импульсные вихревые потоки в электропроводящем объекте контроля. Встречное включение секций КЗО позволяет увеличить интенсивность поля рассеяния без увеличения магнитного сопротивления сердечника. Основная энергия магнитного потока рассеивания сосредоточена в зазоре между секциями, поэтому при анализе взаимодействия преобразователя с объектом контроля зазор может рассматриваться как прямоугольная катушка с высотой, равной высоте секции. Такая конструкция преобразователя позволяет перемагничивать сердечник по предельной петле гистерезиса при гораздо меньших значениях тока, чем у преобразователя с немагнитным зазором или короткозамкнутым витком, и соответственно при меньшем числе витков обмотки возбуждения, что позволяет

Отсутствие гальванической связи между выходными и входными цепями преобразователей, построенных на основе кольцевых ферритовьк сердечников, позволяет включать в цепь КЗО последовательно несколько магниточувствительных элементов или ввести несколько КЗО с магнито-чувствительными элементами, работающими параллельно. Ферритовый сердечник при этом выполняет функции алгебраического сумматора [54, 55]. Такая конструкция преобразователя позволяет измерять ортогональные компоненты или градиент магнитного поля в заданной точке. Применение трех обмоток, подключенных к потенциальным электродам трех датчиков Холла, расположенных в пространстве ортогонально, позволяет определить модуль пространственного вектора магнитного поля. Измеряя сигнал с каждого датчика Холла по отдельности, можно найти проекции вектора на ортогональные оси, а затем определить пространственное расположение самого вектора.

Наибольшей силой поджима характеризуется конструкция по рис. 12.8,«, которую применяют при тяжелом реверсивном режиме работы, наименьшей силой по рис. 12.8, а. Такая конструкция применяется при легком нереверсивном режиме работы.

Опасный участок усилен стальной наклад-кон а (конструкция применяется для подшипников из легких сплавов)

Число крепежных шпилек удвоено (конструкция применяется в тяжело нагруженных подшипниках)

Клемма с косым прорезом (конструкция применяется при стесненных габаритах)

Торцовые пиловидные зубья. Конструкция применяется в заводных рукоятках

На рис. 13.4 представлен разъемный самоустанавливающийся выносной подшипник скольжения, у которого соединение вкладыша с корпусом образует шаровой шарнир с неравными радиусами верхней и нижней частей сфер (гг < г2). Такая конструкция применяется при большой длине подшипника, так как в этом случае даже небольшая непараллельность оси отверстия вкладыша и оси цапфы привела бы к большой неравномерности распределения поверхностного давления по длине вкладыша. Шаровой шарнир позволяет вкладышу наклоняться, обеспечивая полное прилегание к поверхности цапфы на всей ее длине.

1. С напрессованным венцом (бандажированная конструкция; см. рис. 2.1) —бронзовый венец насажен на стальной диск с натягом. Эта конструкция применяется при небольшом диаметре колес в мелкосерийном производстве.

Большей точностью обладает направляющая, в которой посадка осуществляется по призматическому пазу (фиг. 84). Пригонкой (шлифованием или шабрением) осуществляется в данном случае посадка по горизонтальной опорной плоскости и боковым поверхностям паза с минимальными зазорами. По мере увеличения зазора дополнительной обработкой трущихся поверхностей восстанавливается первоначальная посадка. Подобная конструкция применяется для надежного базирования в контрольных станках и приспособлениях при условии редкого перемещения деталей.

• Намотанные тензорезисторы. Тензопроволока наматывается с предварительным натягом в диапазоне деформаций упругого элемента. Эта конструкция применяется преимущественно с формоизменяемыми упругими элементами (рис. 3.22). Преимущество состоит в большой длине тензопроволоки, что обеспечивает большое сопротивление моста и очень хорошую передачу тепла упругому элементу. Поэтому напряжение питания моста можно поднимать до 200 В и получать выходное напряжение до 400 мВ.

Рис. 5.103. Четырехроторный насос-тормоз. Конструкция применяется как демпфер крутильных колебаний, наличие четырех роторов 2 позволяет уменьшить нагрузки на их опоры. При передаче движения от вала / к валу 4. который прикреплен к корпусу 6, величина тормозного момента регулируется перемещением втулки 3 с золотником -5, перекрывающими отверстия, через которые перекачивается масло.

Опасный участок усилен стальной накладкой а (конструкция применяется для подшипников из легких сплавов)




Рекомендуем ознакомиться:
Конденсата вторичного
Конденсаторы испарители
Конденсатора производится
Конденсаторов необходимо
Компонентов практически
Конденсатор вторичного
Конденсат отводится
Конденсируется конденсат
Кондиционер хладагент
Конечными продуктами
Конечного количества
Конечного результата
Конференции челябинск
Конфигурации применяют
Конформное отображение
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки