Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Конструкции цилиндров



Конструкция звездочек цепных передач отличается от конструкции цилиндрических зубчатых колес лишь зубчатым венцом. Поэтому диаметр и длину ступицы выполняют по соотношениям для зубчатых колес (см. с. 64).

Конструкция звездочек цепных передач отличается от конструкции цилиндрических зубчатых колес лишь зубчатым венцом. Поэтому диаметр и длину ступицы выполняют по соотношениям для зубчатых колес (см. §5.1).

На рис. 5.20 приведены возможные конструкции цилиндрических червяков. Одним из основных требований, предъявляемых к ним, является обеспечение высокой жесткости червяка. С этой целью расстояние между опорами стараются делать как можно меньшим.

Конструкцию звездочек цепных передач отличает от конструкции цилиндрических зубчатых колес лишь зубчатый венец. Поэтому диаметр и длину ступицы выполняют по соотношениям для зубчатых колес (см. 5.1).

Цилиндрические опоры — подшипники — имеют цилиндрическую рабочую поверхность большой площади, значительный момент трения, надежно работают при больших нагрузках. Однако эти опоры из-за невозможности регулировать зазор между цапфой и подшипником не обеспечивают высокой точности центрирования вала. Конструкции цилиндрических опор скольжения показаны на рис. 27.17. В малонагруженных конструкциях применяют неразъемные подшипники в виде втулок, запрессованных в корпусе (а, б), или фланцев, прикрепленных к корпусу винтами (в). При действии радиальных сил R и небольших осевых сил Q используют шипы со сферической поверхностью, упирающейся в шарик или в стальную пластину (г). При действии зна-

Рис. 4.21. Конструкции цилиндрических и с<)ерических толстостенных сосудов давления, ослабленных продольными и кольцевыми мягкими швами:

Конструкция звездочек цепных передач отличается от конструкции цилиндрических зубчатых колес лишь зубчатым венцом. Поэтому диаметр и длину ступицы выполняют по соотношениям для зубчатых колес (см. §5.1).

В последнее время все большее распространение получают конструкции цилиндрических электровводов с уплот-

Под батарейными котлами понимается соединение нескольких цилиндрических котлов в одну систему (рис. 29—1). Конструкции этих котлов еще более громоздки, чем конструкции цилиндрических,

Конструкции цилиндрических

Конструкции цилиндрических зубчатых колес

При расчете баков ракет широко используются результаты экспериментальных исследований. Это касается прежде всего расчетов на устойчивость. Критические напряжения потери устойчивости тонкостенных элементов определяют преимущественно опытным путем. В этой главе рассмотрена приближенная методика расчета на устойчивость основного силового элемента конструкции — цилиндрических обечаек несущих баков. Учитывается влияние внутреннего давления, неравномерности распределения напряжений по сечению. Используются данные экспериментов, служащие для уточнения теоретических формул. Приведена последовательность определения численных значений критических нагрузок для различных подкрепленных и неподкрепленных конструкций баков.. Рассмотрены расчеты на прочность цилиндрических обечаек и днищ разной формы, а также сфероидальных и торообразных баков.

Кроме того, рассматриваются разные варианты промежуточного перегрева пара. Для БН-600 он осуществляется в пределах парогенератора до температуры свежего пара, как на обычных ТЭС. Поэтому оказалось возможным применить серийные паровые турбины перегретого пара. Однако опыт эксплуатации показал, что при такой организации промежуточного перегрева осложняются режимы останова и особенно пуска установки — могут возникнуть тепловые удары при поступлении «холодного> пара из ЦВД в промежуточный пароперегреватель. Для энергоблоков с реакторами БН возможны варианты выполнения промежуточного перегрева пара, повышающие надежность работы, но снижающие температуру перегрева пара перед ЦСД по сравнению с температурой свежего пара. Так как для серийных турбин ТЭС обе эти температуры равны, то потребуются некоторые изменения в конструкции цилиндров среднего, а возможно, и низкого давлений. Для АЭС с натриевым теплоносителем возможно также использование парогенераторов сверхкритических параметров.

Для уникальных главных прессовых пневмо- и гидроцилиндров, имеющих большую трудоемкость ремонта, применяется другой метод определения технического состояния: измерение утечек через уплотнения поршня и штока. В конструкции цилиндров при проектировании предусматривается специальный каналг проходящий через поршень и шток, а в узле уплотнения штока — специальная полость (рис. 2). Указанные канал и полость с помощью хлорвиниловых трубок 1 и 2 соединяются с дренажной системой. В удобном месте устанавливаются датчики давления 3 и 6 на 1—4 кгс/см2 и калиброванные жиклеры 4, 5. Для пневмоцилиндров жиклер имеет отверстие 0,5—0,6 мм, для гидроцилиндров подбирается в соответствии с предельной нормой утечки в зависимости от диаметра и типа уплотнения. Для обнаружения нарушения герметичности уплотнения или износа трущейся пары гильза—поршневые кольца устанавливаются датчики давления (последние могут быть встроены в каждую контрольную ветвь).

В зависимости от конструкции цилиндров турбины применяют следующие четыре способа центровки роторов по расточкам уплотнений (измерение штихмасом с микрометрическим винтом).

Цилиндры, головки, блоки цилиндров и картеры. Цилиндры мотоциклетных двигателей изготовляют, как правило, со съёмными головками и отдельно от картера. Цилиндры крепятся к картеру шпильками, число которых определяется конструктивными возможностями. На фиг. 94, 95 и 96 представлены типичные конструкции цилиндров и головок современных мотоциклетных двигателей.

Типы и конструкции цилиндров. Цилиндры ступеней низкого давления выполняются из чуг уна для давлений до 50 am, а в малых компрессорах — до 80 am. Толщину стенок цилиндров I ступени принимают около

изделия, технологические возможности его изготовления и технико-экономическую эффективность. Так, наиболее рациональным вариантом конструкции цилиндров низкого давления паровых турбин, корпусов редукторов и т. п. является комбинация деталей из листового проката, составляющих непосредственно корпус изделия, вместе с литыми или коваными элементами,

1. Особенности конструкции цилиндров

В паровых турбинах, предназначенных для работы паром с невысокой температурой и давлением (400°, 30 а/па), ранее применялись конструкции цилиндров, в которых клапанные и сопловые коробки отливались совместно с верхней или нижней половиной цилиндра (фиг. 51). Это приводило к тому,

Сложность конструкции цилиндров высокого давления объясняется главным образом тем, что они включают в себя элементы парораспределения (клапанные и сопловые коробки) и подвержены действию пара не только самой высокой температуры, но и наибольшего давления. Конструкция цилиндров среднего давления существенно проще благодаря тому, что давление в них невелико — обычно не выше 30—35 ата — и пар подводится к первой ступени симметрично по всей окружности. Последнее обстоятельство обусловливает хорошие условия прогрева цилиндра, чему способствуют также меньшие, чем в цилиндре высокого давления, толщины стенок и фланцев.

Рассмотренные конструкции цилиндров и сопловых коробок представляют собой примеры образования сложных узлов турбин путем сварки между собой стальных отливок относительно простой формы. Интересный пример выполнения сложного и высоконапряженного цилиндра питательного насоса высокого давления из хорошо поддающихся механической обработке относительно простых поковок стали 15Х5МФ показан на фиг. 61. Корпус насоса не имеет горизонтального разъема, благодаря чему толщина стенок в каждом сечении одинакова по окружности. Внутреннее давление действует на торцовые крышки, прибалчиваемые по окружности к корпусу. Такое фланцевое соединение является значительно менее напряженным и работает в лучших условиях, чем горизонтальный разъем цилиндров турбин. Правда, сборка внутренних частей при такой конструкции менее удобна, чем при наличии горизонтального разъема, однако вопросы плотности при давлении питательной воды, достигающем в современных конструкциях величины более чем 300 а/па, настолько важны, что предпочтение, как правило, отдается корпусам насосов без горизонтального разъема. Удобно обрабатываются и патрубки насоса, представляющие собой прочные кованые фланцы с примыкающим коротким участком трубы. Для удобства сварки сварные швы открыты со всех сторон. Патрубки вставляются в заточку корпуса. После сварки место шва доступно с внутренней стороны для осмотра и механической обработки.

В конструкции цилиндров газовых турбин отражаются два характерных обстоятельства: низкое давление (и в связи с этим большой объемный расход рабочего тела) и высокая температура среды. Этим объясняются большие размеры цилиндров газовых турбин и их конструкция, рассчитанная на сохранение низкой температуры внешнего цилиндра. Примером такой конструкции может служить показанный на фиг. 62 цилиндр газотурбинного агрегата ГТН-9-750.




Рекомендуем ознакомиться:
Конденсат возвращается
Компонентов происходит
Конечными деформациями
Конечными выключателями
Конечного потребления
Конечного выключателя
Конфигурации параллелограмма
Конфигурации заготовок
Конгруэнтно соответственно
Конический хвостовик
Конические цилиндрические
Конические развертки
Компонентов составляющих
Конических переходов
Конических редукторов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки