Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Конструкции невозможно



Вид термообработки сварных соединений из разнородных аустепитных сталей определяется условиями их работы, типом конструкции и марками свариваемых сталей. При сварке конструкций из термически неупрочняемых сталей, предназначенных для работы в интервале умеренных температур при отсутствии требований к снятию сварочных остаточных напряжений, термообработку можно не проводить. Если же по условиям работы конструкции необходимо снятие остаточных сварочных напряжений, то проводят стабилизацию при температуре 800— 850° С. Если конструкция предназначена для работы при высоких температурах, то предпочтительнее аустспитизация при температуре 1100-1150° С.

<400 мм) зубчатые венцы соединяют с центром посадкой с натягом. При постоянном направлении вращения червячного колеса на наружной поверхности центра предусматривают буртик, на который направляют осевую силу (рис. 5. 17, а). Соединение венца с центром можно выполнять без буртика (рис. 5.17,6), а посадку выбирать по методике, изложенной в гл. 6. При этом устанавливать винты в стык зубчатого венца и центра не требуется. При больших размерах колес (*/,i.Vi2>400 мм) крепление венца к центру можно осуществлять болтами, поставленными без зазора (рис. 5. 17, я). В этом случае венец предварительно центрируют по диаметру D; сопряжение центрирующих поверхностей выполняют по переходной посадке. Окончательно положение зубчатого венца определяется сопряжением его отверстий со стержнями болтов, поставленных без зазора. В этой конструкции необходимо предусматривать надежное стопорение гайки от самоотвинчивания.

При больших размерах колес (daM2 ^ 300 мм) крепление венца к центру можно осуществлять болтами, поставленными без зазора (рис. 5.17, в). В этом случае венец предварительно центрируют по диаметру D; сопряжение центрирующих поверхностей выполняют по переходной посадке. Окончательно положение зубчатого венца определяет сопряжение его отверстия со стержнями болтов, поставленных без зазора. В этой конструкции необходимо предусматривать надежное стопорение гайки от самоотвинчивания, пружинные стопорные шайбы применять не рекомендуют.

.Для предотвращения хрупкого разрушения сварной конструкции необходимо, с одной стороны, при заданных условиях ее работы иметь возможность определить безопасные размеры трещиноподобных дефектов, превышение которых приводит к их неустойчивому (спонтанному)

Единым критерием технологичности конструкции изделия является ее экономическая целесообразность при заданном качестве и принятых условиях производства. При таком подходе к оценке конструкции необходимо рассматривать весь комплекс требований к ней в целом, чтобы, например, незначительная экономия средств при изготовлении не приводила впоследствии к экономически невыгодному увеличению затрат на техническое обслуживание или ремонт.

грузок. Но было бы неверным всецело полагаться на качество обслуживания. Условия правильной эксплуатации мащ и н ы' должны быть заложены в ее конструкции. Необходимо обеспечить надежную работу даже в условиях недостаточно квалифицированного обслуживания. Если машина портится в неумелых руках, это значит, что конструкция недостаточно продумана со стороны надежности.

В машиностроении или строительстве при проектировании и изготовлении какой-либо механической конструкции необходимо исходить из неизбежности возникновения упругих деформаций, предъявляя при этом к каждому элементу определенные требования в отношении прочности, жесткости и устойчивости. Сопротивление материалов, опираясь на законы и положения теоретической механики и математики, а также на результаты, получаемые при испытаниях конкретных материалов, разрабатывает приемы и методы расчетов на прочность, жесткость и устойчивость в целях обеспечения работоспособности конструкции при минимальной затрате материалов.

При проектировании элемента конструкции необходимо определить размеры, обеспечивающие его безопасную работу при заданных нагрузках. Для успешного решения этой задачи необходимо исходить из того, чтобы наибольшее расчетное напряжение в поперечном сечении элемента конструкции, возникшее при заданной нагрузке, было ниже того предельного напряжения, при котором возникает опасность появления пластической деформации или опасность разрушения.

нугой динамической системы, вынужденные колебания и внешнее воздействие. Для улучшения конструкции необходимо выявить пути повышения динамической жесткости. С этой целью строят формы колебаний.

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции. Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции. Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Оборудование предприятий нефтехимии и нефтепереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Современные методы механики деформируемого твердого тела позволяют прогнозировать долговечность конструкций на основе расчета напряженно-деформированного состояния для любой точки конструкции. Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

Но для расчета напряженно-деформированного состояния на действующей конструкции необходимо точное знание всех термомеханических режимов эксплуатации либо текущей диаграммы нагружения. Знание исходных на момент изготовления конструкции механических свойств металла недостаточно, так как они в процессе эксплуатации существенно изменяются. Проведение стандартных механических испытаний на действующей конструкции невозможно, поэтому в настоящее время расчет напряженно-деформированного состояния для оценки долговечности осуществляется с использованием данных о свойствах материала в исходном состоянии, что не обеспечивает необходимую точность.

мерности формирования различного рельефа излома при различных видах нагружения материала. Более того, были выявлены параметры рельефа излома, которые можно использовать не только для качественного, но и для количественного описания процессов разрушения. Однако в этом случае необходимо привлечение такого многообразия информации из различных областей знания — физика и механика разрушения, материаловедение, теоретическая и строительная механика и др., что без интегрального анализа данных о внешних источниках воздействия на материал элемента конструкции невозможно наиболее полно отобрать именно ту информацию при анализе излома, на основании которой может быть дана оценка реакции материала на это воздействие в виде процесса разрушения.

решения системы не существует, равновесие конструкции невозможно, конструкция находится в движении, усилия в ней должны 3

Повышение прочности стали могло быть достигнуто только увеличением содержания углерода, но многочисленными работами основных материало-ведческих институтов страны было показано, что компенсировать легированием понижение пластичности и снижение сопротивления разрыву, а вместе с ними и падение конструктивной прочности, т. е. прочности, реализуемой в конструкции, невозможно. Поэтому легирование высокопрочных сталей имело целью лишь решение отдельных задач, например обеспечение прокаливаемое™ при заданном сечении. Эта проблема приобрела существенное значение, во-первых, с ростом объема и веса деталей из высокопрочных сталей (так, даже в авиации стали применяться стальные поковки весом в несколько тонн) и, во-вторых, в связи с дальнейшим повышением уровня прочности в других отраслях машиностроения, где и ранее были достаточно крупные сечения изделий — в судостроении, артиллерийской технике. Путем легирования предусматривалось также улучшение качества сварных соединений из высокопрочной стали и осуществление ряда более частных задач повышения статической выносливости и температурной стабильности, варьирования предела текучести, обеспечения воздушной закалки и т. д.

В ГЦН с механическим уплотнением вала осевой подшипник работает на существенно более высоких удельных нагрузках (до € МПа), поэтому использовать рассмотренные конструкции невозможно. В этих ГЦН для осевых подшипников от внешнего источника подводятся специальные масла, а сама конструкция подпятника представляет собой набор не связанных между собой колодок, каждая из которых может поворачиваться вокруг оси или точки. Известны две конструкционные схемы такого подпятника. В первой — каждая колодка имеет жесткую точечную опору качания («подпятник Митчеля»), во второй — колодки опираются на выравнивающие устройства гидравлического, рессорного или рычажного типа. Последний известен как подпятник с уравнительной системой Кингсбери. Принцип работы колодочных подпятников заключается в том, что при правильно установленном центре поворота колодки сами принимают наклон, соответствующий максимальному несущему усилию при любых условиях работы. Эти подшипники при эффективном теплоотводе могут работать с системой смазки «масляная ванна», т. е. не нуждаются в наружном источнике давления.

Непрерывная циркуляционная система смазки применяется на компактных скоростных приводах при v > 8 м/сек.. Подача масла производится из масляного резервуара, которым чаще всего служит коренной подшипник, через каналы в валу и звёздочке прямо на цепь. Отработанное масло,, пройдя фильтр, поступает обратно в резервуар. Такая система смазки удобна в приводах, где по условиям конструкции невозможно поместить дополнительные приспособления для смазки (масляную ванну, маслёнку и т. п.). Циркуляционная смазка цепи имеет широкое применение в автомоторостроении.

щим 0,97, а для пары трения чугун ЧНМХ + фрикционный порошковый материал — 0,58. Таким образом, более благоприятные условия работы у второй пары трения. Однако в колодочных тормозах порошковые материалы обычно не применяют из-за пониженной по сравнению с полимерными материалами стабильности коэффициента трения. В такой конструкции невозможно обеспечить нор-

двух лучей, т. е. каждая деталь соединена не менее чем с двумя другими и дробление конструкции невозможно.




Рекомендуем ознакомиться:
Конический сходящийся
Конические подшипники
Конические сферические
Конических отверстий
Конических поверхностей
Конических углублений
Компонентов участвующих
Коническим переходом
Конической передачей
Конического дифференциала
Конического редуктора
Коническом отверстии
Конкретные мероприятия
Конкретных конструкций
Конкретных мероприятий
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки