Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Конструкционных легированных



Болты из сталей 07Х16Н6 и 1Х15Н4АМЗ-Ш сохраняют высокую прочность до t = 500 °С (рис. 5.5). Сопротивление усталости болтов из этих материалов значительно выше, чем из конструкционных коррозионно-стойких сталей, применяемых обычно для изготовления высокопрочных болтов.

и ударных нагрузках, изготовленных из серого чу-гуна> конструкционных, коррозионно-стойких сталей и др.

При пайке конструкционных, коррозионно-стойких и жаропрочных сталей, меди, серебра, золота, сплавов на их

неорганическими или органическими соединениями (табл. 7). Такие флюсы используют для пайки не только меди и ее сплавов, но и конструкционных и коррозионно-стойких сталей и других сплавов.

Бесканифольные флюсы, содержащие органические и неорганические соединения для пайки черных и цветных металлов. Флюсы этой группы (табл. 9) получили широкое применение в различных областях техники. В состав таких флюсов входят в различных сочетаниях галогениды, бориды и другие неорганические соединения. Органические компоненты — гидразин, глицерин, вазелин, этиленгликоль — оказывают такое же воздействие на окислы паяемого металла, как и в других, рассмотренных выше флюсах. Совместное применение органических и неорганических компонентов дает весьма положительный эффект при пайке меди, медных сплавов, а также конструкционных, коррозионно-стойких сталей и других металлов и сплавов.

Расчет /j (°С) для конструкционных, коррозионно-стойких и жаропрочных паяемых сталей в зависимости от их химического состава может быть выполнен с помощью формулы А. Г. Лиф-шица [23], после некоторой ее корректировки:

МХО-67 Водосмешиваемая СОЖ с полимерной присадкой полиэтиленового воска - 3 %-ные эмульсии при обработке резанием углеродистых, конструкционных, коррозионно-стойких и жаропрочных сталей и сплавов

Карбамол-С-1 Синтетическая ОАО "Пермский завод смазок и СОЖ" Шлифование конструкционных коррозионно-стойких и жаростойких сталей и сплавов

Техмол-1 Синтетическая ОАО "Пермский завод смазок и СОЖ" Лезвийная и абразивная обработка конструкционных, коррозионно-стойких и жаропрочных сталей, сплавов на основе титана и алюминия

Р7М2Ф6-МП 1,0-1,2 3500-4200 1,3-3,0 Р18 Протяжки, метчики, концевые фрезы, развертки, фасонные резцы для чистовой обработки, среднелегированных конструкционных, коррозионно-стойких сталей и жаропрочных сталей и сплавов

Растворимость азота в жидкой стали значительно увеличивает хром — необходимый элемент коррозионно-стойких сталей. Кроме того, хром связывает азот в прочные нитриды CrN и C^N, имеющие высокую (до 1200 °С) термическую стабильность. Оба эти фактора обусловили возможность сверхравновесных (1,0 - 1,3%) концентраций азота именно в коррозионно-стойких сталях. В обычных конструкционных коррозионно-стойких сталях содержание азота составляет 0,15 - 0,25 %.

В отношении оценки относительной степени влияния различных элементов на прокаливаемость существуют данные, расходящиеся в количественном выражении. Наиболее сильно увеличивают прокаливаемость хром, никель, молибден, марганец, поэтому они входят в состав большинства конструкционных легированных сталей.

Поскольку термической обработкой закалка + отпуск 600°С невозможно значительно повысить прочностные свойства СтЗ*, то в тех случаях, когда необходимо иметь более высокий предел текучести, применяют легированные стали. Эти стали обычно называют низколегированными, или строительными сталями повышенной прочности. В отличие от конструкционных легированных сталей, строительные стали повышенной прочности у потребителей не подвергаются термической обработке, т. е. структура и служебные характеристики формируются при производстве сталей.

Стальные электроды применяются при дуговой электрической сварке конструкционных, легированных сталей, сталей с особыми свойствами, при сварке чугунов и при наплавке. Металлические электроды для дуговой сварки черных металлов разделяются по свойствам покрытий на электроды с ионизирующим покрытием (тонкопокрытые) и электроды с защитным покрытием (толстопокрытые), которые способны наряду с защитой значительно легировать металл шва, меняя химический состав и механические свойства наплавленного металла.

цементуемых конструкционных легированных сталей

Химический состав и механические свойства улучшаемых конструкционных легированных сталей

Таким образом, в данном случае выгоднее применить сталь ЗОХГС, несмотря на ее малый коэффициент линейного расширения. Кроме того, аустенитные стали значительно дороже конструкционных легированных сталей.

Среднеуглеродистые легированные стали применяют для деталей, подвергаемых улучшению и поверхностной или объемной закалке до средней или высокой твердости. Легирующие элементы в конструкционных легированных сталях, как правило, повышают механические свойства, закаливаемость и прокаливаемость сталей.

В табл. 1.3 приведены данные о режимах термообработки и свойствах некоторых цементуемых конструкционных легированных сталей, применяемых в узлах трения различного назначения[11].

Первые исследования сталей, обработанных методом ВТМО, показали, что в результате данной обработки практически устраняется развитие обратимой отпускной хрупкости конструкционных легированных сталей в опасном в этом отношении интервале температур отпуска [16, 70, 88, 89], резко повышается

В США одна из разновидностей НТМО, применяемая при обработке конструкционных легированных сталей, получила название «аусформинг» [115—126], а другая, используемая при упрочнении инструментальных быстрорежущих сталей, была названа «маруоконг» [127]. Еще в 1954 г. Э. Липе и Г. Ван-Цвилен [102] обнаружили, что после деформирования метаста-бильного аустенита в температурном интервале между перлитным и бейнитным превращениями с последующим превращением аустенита в мартенсит или игольчатый троостит прочностные характеристики более чем на 33% выше, чем после обычных режимов термической обработки. Так, деформация переохлажденного аустенита с последующей закалкой и низким отпуском (100—200°) привела к возрастанию предела прочности хромоникелевой стали (0,35% С; 1,5% Сг; 4,5% Ni) с 209 до 280 кГ/мм2, одновременно увеличила относительное удлинение с 2 до 12%, причем сужение поперечного сечения возросло

В отличие от НТМО, ВТМО не требует прессового оборудования большой мощности. Однако существенным недостатком ВТМО являются определенные технологические трудности, связанные с необходимостью во многих случаях подавлять процесс рекристаллизации [161]. Так, проведение ВТМО конструкционных легированных сталей в условиях прокатки при температуре 800—1100° возможно только на сечениях толщиной около 10 мм; дальнейшее увеличение толщины заготовок приводит к развитию процесса рекристаллизации и к снятию эффекта упрочнения. В то же время одним из перспективных направлений в использовании ВТМО является аналогичная по технологии обработка поверхностных слоев изделий [131, 132]: поверхность детали или отдельные ее участки (в особенности в местах концентрации напряжений) могут быть упрочнены в результате локального скоростного индукционного нагрева токами высокой частоты, совмещаемого- с последующей местной пластической деформацией и закалкой [161].




Рекомендуем ознакомиться:
Консольного расположения
Консольно закрепленного
Константы интегрирования
Константы распределения
Константы заместителя
Компоновки котельных
Константа излучения
Константой равновесия
Конструирования пластмассовых
Конструирование металлорежущих
Конструировании необходимо
Конструкций эксплуатируемых
Конструкций целесообразно
Конструкций фундаментов
Конструкций исследования
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки