Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Конструкционных металлических



эффекта эмерджентности. Стохастическая природа внешних воздействий, а в значительной степени и внутренних процессов, протекающих в конструкционных материалах в условиях эксплуатации, приводит к труднопрогнозируемым результатам такого проявления

Для процессов деформирования и разрушения металлически* материалов показано, что при силовых, температурных, радиационных и других видах воздействия связь между простыми отношениями переменных, контролирующих течение процессов, пропорциональна. На примере процесса распространения усталостных мпкротрещик в конструкционных материалах показано, что параметры, характеризующие неустойчивость процесса на мезо- и макроуровнях, обладают свойством подобия и масштабной инвариантности (скейлингом).

Одной из важнейших задач в комплексе проблем, связанных с развитием нефтеперерабатывающей и нефтехимической отраслей России, является обеспечение высокой эксплуатационной надежности технологического оборудования. Важность этой задачи обусловлена как специфическими особенностями указанных отраслей, так и современными тенденциями их развития. К числу факторов, выделяющих нефтепереработку и нефтехимию из сферы промышленного производства, следует отнести широкое применение в технологических процессах повышенных и криогенных температур; высоких давлений и вакуума; коррозионных, огне- и взрывоопасных сред; сильнодействующих ядовитых веществ; сложные режимы нагружения технологического оборудования, включающие различные виды и сочетания силовых, тепловых и коррозионных нагрузок [1, 2]. Для большинства видов оборудования эти факторы действуют одновременно, приводя к проявлению системного эффекта эмерджентности. Стохастическая природа внешних воздействий и внутренних процессов, протекающих в конструкционных материалах, делает результаты такого проявления трудно прогнозируемыми. При неблагоприятном стечении обстоятельств это может привести к большому экономическому ущербу, нарушению нормальной экологической обстановки на значительных территориях, а в особо тяжелых случаях- к человеческим жертвам.

Преимущество газовых турбин перед поршневыми двигателями внутреннего сгорания состоит в отсутствии инерционных усилий, вызываемых возвратно-поступательным движением поршня. Эти двигатели, кроме того, позволяют в небольших по размерам агрегатах создавать большие мощности. Препятствием к применению их в энергетике служат высокие температуры, которые не могут быть использованы при существующих конструкционных материалах. В поршневых двигателях эти высокие температуры газов действуют в течение небольшой доли цикла, в то время

полученные на конструкционных материалах с помощью ВМТО (см. табл. 4), в частности увеличение предела длительной прочности (Тюо и времени до разрешения tp, как правило, ниже эффекта упрочнения, получаемого методом МТО. Исключение составляет технически чистый никель, срок службы которого после ВМТО возрастает более чем в 100 раз, однако эти данные получены при сравнительно кратковременных испытаниях. Наиболее эффективно жаропрочные свойства конструкционных сталей и сплавов, обработанных по оптимальным режимам ВМТО, повышаются при последующей службе в температурной области 550—650° [73], т. е. примерно в том же интерзале температур, при котором стабильный эффект упрочнения достигается с помощью МТО. При более высоких температурах эффект упрочнения материалов, подвергнутых ВМТО, снижается.

Процесс циклического нагружения элемента конструкции в условиях эксплуатации сопровождается постепенным накоплением повреждений в материале до некоторого критического уровня, который может быть охарактеризован с привлечением различных методов и средств исследования. Выбор средств определяется применяемыми критериями в оценке самого предельного состояния и его фактической реализацией к рассматриваемому моменту времени, как это было рассмотрено в предыдущей главе. Даже при отсутствии в детали трещины можно с большой достоверностью утверждать, что после длительной наработки в эксплуатации последующее после проверки нагружение может вызвать быстрое зарождение и далее распространение усталостной трещины. Оценка состояния материала с накопленными в нем повреждениями и прогнозирование последующей длительности эксплуатации до появления трещины, установление периодичности контроля за состоянием детали подразумевают использование структурного анализа на базе физики металлов. Это подразумевает обязательное применение методов механики разрушения для оценки длительности роста трещины и обоснования периодичности осмотров на всех стадиях зарождения и распространения трещин. Однако многопараметрический характер внешнего воздействия на любой элемент конструкции делает неизбежным введение в рассмотрение процесса накопления повреждений в конструкционных материалах с позиций синергетики, следовательно, возникает новое представление о процессе распространения трещин. Всю совокупность затрат энергии внешнего воздействия, вызвавших разрушение элемента конструкции, интегрально характеризуют: достигнутое на определенной длине трещины предельное состояние, единичная реализация процесса прироста трещины и сформированная в результате этого поверхность разрушения.

В связи с этим рассмотрим разные масштабы процессов пластической деформации в конструкционных материалах.

Влияние возрастания частоты нагружения при неизменной влажности на процесс разрушения приводит к снижению скорости роста усталостных трещин. Оно сопровождается одновременным снижением шага усталостных бороздок в различных конструкционных материалах на основе железа, алюминия, титана и никеля и др. [14-20]. Количественная оценка этого влияния может быть проведена путем выявления границ, внутри которых сохраняется неизменным ведущий механизм разрушения независимо от того, какие именно взаимодействующие процессы приводят к этому механизму. При таком подходе к анализу влияния частоты нагружения на процесс роста трещин, устанавливаемые соотношения будут устойчивыми, и они будут отвечать условиям подобия в пределах между двумя соседними точками бифуркации. Между этими точками изменения кинетических .парамет-

ционных конструкционных материалах). Эти скорости зависят от направления распространения волны, а при нагружении за пределом упругости и от уровня напряжений. Они усреднены по малому объему композиционного материала, включающему множество слоев, волокон или дисперсных частиц в зависимости от структуры материала. В пределах каждой фазы напряжения распространяются, разумеется, так же, как в соответствующих однородных материалах.

Обзор, посвященный волнам напряжений в традиционных конструкционных материалах, представлен в работе Микло-витца [109].

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армирующих стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальде-гидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы, В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу «Конструкционная прочность машиностроительных материалов» на факультете «Машиностроительные технологии» (кафедра «Материаловедение») и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные нагрузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс усталости связан с постепенным накоплением и взаимодействием дефектов кристаллической решетки (вакансий, междоузельных атомов, дислокаций и дискли-иаций, двойников, границ блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления структурных повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.

конструкционных металлических материалов (преимущественно сплавов на основе железа) с повышенной прочностью и эксплуатируемых в напряженном состоянии преобладающей формой коррозии является локальная коррозия — коррозионное растрескивание, питтинг, межкристаллитная коррозия, ножевая коррозия и другие ее виды. Потери металла в этих случаях относительно невелики, но механическая его прочность ухудшается, и оборудование быстро выходит из строя.

Однако для конкретной конструкции или образца диаграмму нагрузка — перемещение можно исследовать и феноменологически классифицировать заключенную в ней информацию без глубокого понимания явлений, происходящих на более низком масштабном уровне. Именно так и поступают в механике материалов и при проектировании конструкций из обычных конструкционных металлических сплавов. Все это хорошо до тех пор, пока условия изготовления или условия внешней среды таковы, что основные механические свойства материала остаются неизменными.

В предлагаемой монографии дан анализ строения изломов конструкционных металлических материалов в связи с их локальной пластичностью и способностью тормозить разрушение. На основании изложенных закономерностей и особенностей макро- и микроскопического строения изломов в зависимости от условий нагружения и структуры материалов можно устанавливать характер и причины эксплуатационных разрушений. Авторы предполагают, что одновременное рассмотрение особенностей изломов при разных структурных состояниях материала позволяет установить общие и специфические особенности различных изломов.

Так, характерной особенностью развития машиностроения и конструкционных металлических материалов для него является относительно быстрое изменение основных технических характеристик машин и необходимых свойств конструкционных материалов, что обусловлено довольно быстрым моральным старением техники. Планирование развития таких объектов всегда осуществляется в условиях недостаточности информации, как о прошлом и настоящем, так и о будущем их состоянии в СССР и за рубежом. В связи с этим развитие конструкционных металлических материалов для машин и механизмов в основном базируется на принципах эвристического подхода. Метод экспертных оценок при этом служит одним из основных источников информации, особенно в случае малого объема данных о перспективах развития отраслей, потребляющих эти материалы.

Эти цифры, конечно, приблизительны и нуждакш в уточнении применительно к тем или иным отрасл? техники. Среднестатистический период внедрения из бретения для машиностроения составляет 10—15 ле для конструкционных металлических материалов speiv от начала исследований до широкого промышленно] производства составляет 15 лет.

Для целого ряда разделов техники и, в первую очередь для химической, нефтехимической и целлюлозно-бумажной промышленностей, из всех свойств конструкционных металлических материалов важнейшим является их коррозионная стойкость, которая определяет в основном и срок службы технологического оборудования и надежность его эксплуатации. В связи с высокими темпами развития этих отраслей, связанного, как правило, с использованием новых агрессивных сред и более высоких температур и давлений, в последние годы весьма актуальной стала задача расширения ассортимента коррозионностойких сплавов и, прежде всего, сплавов массового потребления.

Физические методы исследования, включая тепловую микроскопию, помогают раскрыть реальный смысл указанных структурных параметров и уточнить кинетические уравнения, определяющие их изменение. Наряду с микроструктурным изучением процессов пластической деформации и разрушения конструкционных металлических и других материалов в условиях высокотемпературного нагрева или охлаждения до криогенных температур тепловая микроскопия вносит большой вклад в разработку физи-

Физические методы исследования, включая тепловую микроскопию, помогают раскрыть реальный смысл указанных структурных параметров и уточнить кинетические уравнения, описывающие их изменение. Кроме того, тепловая микроскопия наряду с микроструктурным изучением процессов пластической деформации и разрушения конструкционных металлических и других материалов в условиях высокотемпературного нагрева или охлаждения до криогенных температур вносит большой вклад в разработку физических основ термической и других видов упрочняющей обработки металлов и сплавов. Вполне понятно, что для осуществления таких изысканий экспериментатор должен обладать достаточным арсеналом методов и средств непосредственного изучения строения и свойств металлических материалов в условиях высокотемпературного нагрева или глубокого охлаждения.

Эмаль ЭП-789 зеленая на основе смолы Э-49 и ФПФ-1. Для полноты отверждения в состав введен катализатор — ор-тофосфорная кислота. Применяется для защиты конструкционных металлических материалов в условиях морского климата.

Ниже приводятся данные по стойкости ряда конструкционных металлических и неметаллических материалов, наиболее важных для создания циркуляционных контуров и других систем, непосредственно соприкасающихся с теплоносителем при повышенных температурах. При изложении этого материала мы использовали работу [21, дополнив ее результатами работ последних лет.




Рекомендуем ознакомиться:
Консольно фрезерный
Компоновки агрегатов
Константы материала
Константы скоростей
Константы зависящие
Константа больцмана
Константа определяемая
Константу равновесия
Конструирования заготовок
Конструирование справочник
Конструировании подшипников
Конструкций энергетического
Компоновки современных
Конструкций испытывающих
Конструкций изготовляемых
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки