Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Композитных материалов



В композитных материалах возникает задача проверки процентного содержания веществ связующего и наполнителя (см. п. 3.2.1). От состава материала зависит его плотность. Если массовая доля наполнителя F—m2/(mi-\-m>), где mi и т2 — массы связующего и наполнителя, то плотность материала р = = РФ2/[Р2— •/7(Р2— pi)].

Карпинос Д. М., Федоренко В. Н., Влияние защитных покрытий на прочность связи волокно — матрица в композитных материалах, Пробл. прочности, № 4 (1976).

Роль поверхности раздела в композитных материалах с металлической матрицей интенсивно изучалась как в научном, так и в технологическом плане лишь в последнее время. Представления о поверхности раздела развивались неравномерно в различных направлениях; в данном томе рассмотрены лишь те области, где накоплено достаточно данных. Некоторые важные вопросы —такие, как влияние поверхности раздела на усталость и ползучесть, — совсем не обсуждаются. Более того, ограниченность сведений не позволила завершить книгу формулировкой требований к идеальной поверхности раздела. Тем не менее, редактор считает необходимым провести в первой главе совместное обсуждение ряда вопросов, каждому из которых посвящен самостоятельный раздел книги. Эта глава состоит из краткого введения и обзора предмета в целом. Хотя обзор имеет характер скорее обобщающий, чем специализированный, читатель, впервые обращающийся к данной области, возможно, захочет вернуться к нему после знакомства с отдельными главами.

Проблемы, связанные с состоянием поверхности раздела, свойственны не только композитам с металлической матрицей. Для улучшения состояния поверхности раздела в стеклопластиках стеклянные волокна подвергают аппретированию. Известно, что оптимальное аппретирование является нелегким компромиссом между рядом требований, таких, как защита отдельных нитей от механических повреждений, хорошая связь стекла с полимером, сохранение этой связи в условиях эксплуатации, особенно в присутствии влаги. Оптимизация состояния поверхности раздела в композитных материалах с металлической матрицей требует, по-видимому, аналогичных компромиссных решений. Требования к поверхности раздела в металлических композитных материалах не менее жестки, чем для стеклопластиков. Так, уже упоминалась химическая несовместимость многих сочетаний матрица—-волокно вследствие как недостаточной, так и излишней реакционной способности (в первом случае имеются в виду системы, где механическая связь компонентов не достигается из-за отсутствия соот-

Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение волокон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.

Аналитические и экспериментальные исследования роли поверхности раздела в композитных материалах часто не учитывают влияния остаточных напряжений. Это — досадное упущение, обычно ведущее к неправильной интерпретации свойств и поведения композитов. Остаточные напряжения являются неотъемлемой характеристикой композита, а их отсутствие — скорее исключением, чем правилом.

Недавно был установлен основной механизм окисной связи в композитных материалах А1 — В, хотя многие детали процесса до сих пор остаются неясными. С концепцией окисной связи согласуются и данные о эрозии окисной пленки под действием расплава алюминия, и данные о ее сохранении при изготовлении композита путем диффузионной сварки в оптимальных условиях. Разрушение окисной пленки инициирует химическую реакцию. Механизм разрушения окисных пленок сложен; он включает как механические разрывы, так и сфероидизацию. Механические разрывы— основной вид разрушения связи, создаваемой диффузионной сваркой, но они происходят лишь в Отдельных точках. Сферо-идизация — длительный процесс нарушения сплошности пленки, который определяется избытком поверхностной энергии тонких окисных слоев.

Существует несколько подходов для описания процесса разрушения или роста трещины в композитных материалах. В их числе: классическая механика разрушения, применяемая на микроуровне, классическая механика разрушения, применяемая к «эффективному» материалу на макроуровне, квазигетерогенная модель композита, использованная авторами.

50. Поверхности раздела в композитных материалах. Композиционные материалы. Т. I. Пер. с англ./Под ред. И. Л. Светлова. М., Мир, 1978. 438 с.

Сложность анализа волновой картины в композитных материалах, в отличие от гомогенных, заключается в том, что на границе сцепления слоев при прохождении ударных волн появляются отражения, обусловленные различной динамической жесткостью pD материалов, из которых состоит исследуемый образец [121] (р — плотность, D — скорость распространения ударной волны). В связи с этим возникает вопрос о выборе схемы нагружения, удобной для анализа и расчета. С этой целью были проведены испытания на прочность сцепления при импульсных нагрузках слоев биметаллических материалов.

Отличительной особенностью всех методов, упрочняющих металл путем увеличения числа дефектов, является то, что, после их использования, при повышении температуры восстанавливается регулярность строения металла внутри зерен и прочность падает. Для предотвращения этого падения прочности в самолетных и ракетных конструкциях, а также в газовых турбинах, где температура доходит до 1200—1500° С, ведется большой научно-технический поиск в направлении получения весьма высокой прочности металла за счет устранения из него дефектов. Высокая прочность идеальных по структуре (бездефектных) монокристаллов позволяет использовать весьма высокопрочные так называемые усы в композитных материалах. Устранение одной из категорий дефектов достигается за счет получения чистого (без примесей) металла путем применения вакуумной дистилляции, зонной плавки и разложения летучих соединений металлов. Устранение других дефектов, таких, как дислокации и их источники, не связанных с наличием примесей, достигается воздействием на металл высоких давлений, измеряемых тысячами и десятками тысяч атмосфер. По-видимому, устранение дефектов позволит получить металлы, прочность которых подойдет вплотную к теоретической.

Единственный реальный способ использования нитевидных кристаллов — это создание композитных материалов, состоящих из усов, ориентированно уложенных в металлической (например, алюминиевой) или пластмассовой матрице. Если усы имеют длину, достаточную для прочного сцепления с матрицей по боковой поверхности усов, то удается в значительной мере использовать их прочность. Прочность композитных материалов, содержащих по массе 40-50% усов, в направлении вдоль усов составляет примерно 30% прочности усов. Так, композиция из сапфирных усов (Л12О3) и металлического алюминия имеет прочность на растяжение 500-600 кгс/мм2.

Гидравлические испытания металлопластиковых (из композитных материалов) сосудов должны производиться пробным давлением, определяемым по формуле

1. Бобрышсв А. II., Коэомпзо» В. Н., Бобин Л. О., Соломатов В. И. Синергетика композитных материалов — Липецк, НПО «Ориус., 1У94, 153 с.

Практика :жсилуатации современных машин и сооружений при экстремальных условиях их работы, происходящих зачастую при высоких уровнях напряжений и температуры, свидетельствует о налимий ярко выраженной временной зависимости процесса разрушении. Во многих случаях полному разрушению тела предшествует длительное устойчивое развитие трещины, причем величина ;>топ> периода может составлять значительную часть долговечности элемента конструкции. Такое; длительное разрушение, происходящее нередко при постоянных внешних нагрузках, особенно характерно для полимеров, композитных материалов и металлов при высоких температурах. Причиной медленного роста трещины в таких случаях обычно являются ползучесть материала и накопление рассеянных повреждений.

112. Килиее В. ,1., Наплин А. Ь. Трсшнна продольного слвпга и кусочпо-од-породноп ynpyroii среде1.— '.Механика композитных материалов, 1981, As 4, с. 57Я—584.

При контроле изделий из пластмассы и композитных материалов (см. § 3.2) иногда применяют акустический контакт через слой воздуха: воздушно-акустическую связь. Такой способ связи не употребляют при контроле металлов из-за большой разницы акустических сопротивлений и малом коэффициенте прозрачности (см. задачу 1.3.1). Разница волновых сопротивлений для воздуха и пластмассы существенно меньше, поэтому доля прошедшей в ОК акустической энергии достаточна для выполнения контроля.

Применение метода АЭ при испытаниях композитных материалов, например стеклопластиков, позволило установить механизм

Контроль полимерных композитных материалов, в частности стекловолокна, углепластика, — более сложная задача, чем контроль бетона, в свяси с их ортотропностью. Здесь устанавливают корреляционные зависимости между прочностью в заданном направлении, с одной стороны, и двумя или несколькими измеряемыми параметрами — с другой. Например, для стеклопластика пользуются формулой

8. Потапов А. И. Контроль качества и прогнозирование надежности конструкций из композитных материалов. — Л.: Машиностроение, 1980. — 261 с.

• COMPOSITES - база данных композитных материалов;

Радиоволновой неразрушающий контроль основан на анализе взаимодействия электромагнитного излучения радиоволнового диапазона с объектом контроля. На практике наибольшее распространение получили сверхвысокочастотные (СВЧ) методы, использующие диапазон длин волн от 1 до 100 мм. Взаимодействие радиоволн может носить характер взаимодействий только падающей волны (процессы поглощения, дифракции, отражения, преломления, относящиеся к классу радиооптических процессов) или взаимодействия падающей и отраженной волн (интерференционные процессы, относящиеся к области радиоголографии). Кроме того, в радиодефектоскопии могут использоваться специфические резонансные эффекты взаимодействия радиоволнового излучения (электронный парамагнитный резонанс, ядерный магнитный резонанс и др.). Использование радиоволн перспективно по двум причинам: расширения области применения диэлектрических, полупроводниковых, ферритовых и композитных материалов, контроль которых другими методами менее эффективен; возможности использования особенностей радиоволн диапазона СВЧ.




Рекомендуем ознакомиться:
Кратности концентраций
Кратности резервирования
Кремниевые выпрямители
Крепежные соединения
Концентрация свободных
Крепления двигателя
Крепления обрабатываемой
Крепления заготовки
Креплением пластинок
Крепление подшипников
Криогенных жидкостей
Криолитовое отношение
Кристаллы химического
Кристалла мартенсита
Кристаллические структуры
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки