Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Контактных давлениях



Тепловые ВЭР — физическая теплота уходящих газов ферритных, пиролизных, рудно-термических, дивинильных, каль-цинационных содовых печей, печей обжига известняка, плавильных котлов каустика, радиационно-конвективных подогревателей кислорода и метана, продуктовых потоков колонн синтеза (аммиака, метанола, карбамида), конвертеров природного газа и СО, хвостовых газов в производстве азотной кислоты, контактных аппаратов серной кислоты и др. Кроме того, тепловыми ВЭР являются охлаждающая вода, конденсат, дистиллерная жидкость, пар вторичного вскипания, феррит, шлак рудотермиче-ских печей.

физическое тепло отходящих газов контактных аппаратов (в производстве слабой азотной кислоты), печей пароуглекислотной конверсии метана природного газа, конвертеров, известковых и Карбидных печей, физическое тепло продуктов сгорания промышленных стоков в производстве ацетальдегида;

физическое тепло азотно-водородной смеси колонн синтеза (в аммиачном производстве), физическое тепло контактного газа, синтез-газа, нитрозных газов, продукционных газов контактных аппаратов производства слабой азотной кислоты;

ЖЧХ2 — то же, но жаростойкий в воздушной среде до 600° С. Применение: колосники и балки горна агломерационных машин, детали контактных аппаратов химического оборудования, решетки трубчатых печей нефтеперерабатывающих заводов, детали турбокомпрессоров, детали стекломашин.

Была выполнена обширная программа исследований, включающая разработку оригинальной системы контактных аппаратов, подбор наиболее эффективных катализаторов, очистку аммиака от примесей, изучение методов разложения нелетучих аммониевых солей с целью выделения из них газообразного аммиака, и т. п. Опытно-промышленная установка позволяла вести процесс окисления аммиака непрерывно с выходом до 95% азотной кислоты.

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов — вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов; во-вторых,— повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки; в-третьих, — возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло- и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло- и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.

тепло- и массообмена применительно к расчету процессов в контактных аппаратах. Практически единая теория расчета процессов в контактных аппаратах для систем «газ — жидкость» отсутствует. Это затрудняет разработку, проведение исследований, испытаний контактных аппаратов, технических установок и систем, оптимизацию по режимным и конструктивным параметрам, выбор способа и организацию автоматического регулирования, сопоставление аппаратов по эффективности, поиск направлений совершенствования и расширение области применения, вызывает необходимость дополнительных затрат и объемов работ. Таким образом, обобщающие теоретические разработки в области тепло- и массообмена являются актуальными, так как позволяют более правильно, на основе физических представлений, и е меньшими затратами решать поставленные задачи.

В первой главе рассмотрены особенности описания и условий протекания процессов тепло- и массообмена в контактных аппаратах и классификация последних. Во второй главе на основе модельных представлений даны вывод, решение и анализ дифференциальных уравнений интенсивности тепло- и массообмена как основы расчета процессов в контактных аппаратах. В третьей главе приведены результаты экспериментальных исследований. В четвертой главе рассматривается метод инженерного расчета процессов тепло- и массообмена в применении к контактным аппаратам различных классов. В пятой главе описываются условия использования контактных аппаратов в энергетических и теплоиспользую-щих установках, схемы их включения, режимы работы; приводятся примеры расчета.

1-1. КЛАССИФИКАЦИЯ КОНТАКТНЫХ АППАРАТОВ

жидкости в аппарате [16]. Образуемая в аппаратах пена играет двоякую роль. С одной стороны, она позволяет увеличить поверхность контакта и, до известного предела, скорость газа в аппарате, что способствует интенсификации тепло- и массообмена. С другой стороны, наличие пены сковывает подвижность отдельных мелких частиц жидкости (на этом и основана ее роль гасителя брызгоуноса) и ограничивает скорость газа условиями выноса пены из аппарата (превышение скорости газа приводит к выносу пены из аппарата, что недопустимо). Это снижает интенсивность процесса тепло- и массообмена. Увеличения относительной скорости можно достичь с помощью искусственного поля тяготения, например поля центробежных сил, увеличивающего вес жидкости. В отличие от других контактных аппаратов в пенных невозможно в полной мере использовать искусственно созданные поля тяготения в объеме реактивного пространства, так как сил поверхностного натяжения жидкости может быть недостаточно для формирования пленок, составляющих своеобразный силовой каркас пены. Под действием многократно возросшего веса жидкости, находящейся в пене, в искусственном поле тяготения ее силовой каркас разрушится и пена будет погашена, что препятствует дальнейшей интенсификации процессов тепло- и массообмена в пенных аппаратах указанным способом.

В зависимости от скорости газа в ЦТА гидродинамическое сопротивление АР может изменяться в широких пределах. В рабочем диапазоне скоростей сопротивление ЦТА не только одного порядка с сопротивлением известных контактных аппаратов, но и может достигать весьма малых значений — 100 Па. Зависимость АР от расхода воздуха для конкретного ЦТА показана на рио. 1-8.

Использование технологий модификации первого поколения [165, 166], основанных на однократном или многократном однотипном внешнем воздействии потоками тепла, массы, ионов и т.д., не всегда обеспечивает требуемые показатели износостойкости материалов при высоких температурах, контактных давлениях и действии агрессивных сред. Поэтому расширение области применения и эффективности методов модификации металлов и сплавов для их использования в экстремальных условиях эксплуатации связано с созданием комбинированных и комплексных способов упрочнения, сочетающих достоинства различных технологических приемов. Существует несколько базовых способов упрочнения, эффективность которых в сочетании с другими методами подтверждена производственной практикой [165, 166]. К таким методам относятся ионно-плазменное напыление, электроэрозионное упрочнение, поверхностное пластическое деформирование, а также термическая обработка. Модификация структуры и свойств материалов при этом происходит за счет сочетания различных механизмов, отличающихся физико-химической природой. На этой основе разрабатываются новые варианты технологий второго поколения, включающие двойные, совмещенные и комбинированные процессы [166-169], в которых применяются потоки ионов, плазмы и лазерного излучения. К данному направлению относятся обработка нанесенных

Для прецизионных измерительных и автоматически управляемых приборов применяются потенциометры с обмоткой из сплавов благородных металлов. К этим материалам предъявляются высокие требования: коррозионная стойкость» стабильность электрического сопротивления, малый температурный коэффициент электросопротивления, малая термоэлектродвижущая сила в паре с Си, высокое сопротивление износу, малое контактное сопротивление. Сплавы применяются в виде тонких проволок. Сопротивления работают на малых токах и при малых контактных давлениях. От сплавов требуется также хорошая пластичность и достаточная прочность. Широко применимы для этой цели сплавы Pt с 1г„ содержащие от нескольких до 25% 1г. Применяются также сплавы Pd с 30— 40%Ag, имеющие малый температурный коэффициент электросопротивления.. Исследовательские работы по разработке сплавов платины, палладия и золота с неблагородными металлами стимулировались бурным развитием автоматики

Исследование одновременного воздействия коррозионной среды и контактного трения на усталостную прочность титанового сплава ВТ6 с ов = 800-г860 МПа изучено авторами работы [159]. Из кованых заготовок вырезали специальные образцы диаметром рабочей части 20 мм, моделирующие ось с напрессованными втулками. Моделировали два типа закрепления втулок: конические напрессованные, передающие изгибающий момент, и цилиндрические, не передающие его. Материалом для втулок служили титановые сплавы ВТ6 (ав = 830 МПа), ПТ-ЗВ (ав = 730 МПа) и ВТ1 (ав = 580 МПа). Запрессовку втулок производили с различным контактным давлением. Усталостные испытания вели на воздухе и в 3 %-ном растворе NaCI. Обкатывание подлежащих запрессовке частей конических и цилиндрических образцов выполняли с помощью шарикового приспособления при следующих режимах: усилие обкатки Р= 2000 Н, диаметр шарика D= 10 мм; скорость обкатки 350 об/мин, число, проходов два. Кривые усталости образцов с напрессованными втулками, передающими изгибающий момент, при различных контактных давлениях представлены на рис. 101. Предел выносливости гладких образцов без напрессовки втулок был равен 380 МПа при испытании на воздухе и в коррозионной среде. Напрессовка втулок на неупрочненные

При контактных давлениях, превышающих предел текучести исследуемого материала, периодический характер накопления пластической деформации, связанный с упрочнением и разрушением поверхностного слоя, сохраняется в широком диапазоне условий трения. Начальная стадия процесса изнашивания связана с образованием микротрещин. По мере роста числа воздействий инден-тора число микротрещин увеличивается, в результате чего отделяются частицы износа. Микротрещвны образуются тем быстрее, чем больше контактное давление. Таким образом, установлена общность механизма разрушения лри трении в условиях пластического контакта и при объемной малоцикловой усталости.

В случае спекания под давлением смачиваемость также играет существенную, роль. Высокая степень смачивания обеспечивает малое или нулевое значение двугранного угла на стыке пары частиц твердой фазы и проникновение жидкости в места контакта. Это способствует устранению заклинивания и слипания частиц, которое возникает при высоких контактных давлениях и более легкому скольжению частиц под приложенным давлением. Экспериментально влияние смачиваемости на реологические свойства дисперсий почти не исследовано. Только в одной работе [11] сообщается, что предельное напряжение текучести паст, образованных окисью цинка и сульфида цинка в растворах изобутилового спирта, а-хлорнафталина и других, сильно зависит от смачиваемости (уменьшается при падении краевого угла).

Проведение эксперимента. Анализ литературных данных свидетельствует о том, что процесс разрушения металлов и сплавов при объемном циклическом деформировании характеризуется однозначными закономерностями структурных изменений только в области малоцикловой усталости. На этом основании область контактных давлений, превышающих предел текучести материала, была выбрана для анализа закономерностей структурных изменений при трении. Малоцикловая усталость (область пластического контакта) реализуется преимущественно при сухом трении скольжения при больших контактных давлениях и температурах выше 100 °С. В этих условиях работают муфты, тормозные устройства, опорно-поворотные круги экскаваторов [20, 22, 51, 93]. Наиболее распространенным материалом в такого рода узлах являются стали и металлокерамики на железной основе. Выбор материала для исследования (сталь 45) обусловлен не только его практической применимостью в узлах трения, но и изученностью с точки зрения развития разрушения при объемном циклическом деформировании, что является необходимым условием для сопоставления механизма разрушения при объемной и фрикционной усталости.

При количественной оценке периодичности структурных изменений [большое значение приобретает выбор интервала исследования. Только при больших контактных давлениях, близких к пределу текучести материала, прослеживая за изменением состояния поверхностного слоя от цикла к циклу, представляется возможным определить период, за время которого материал проходит

58. Верещагин Л. Ф., Шапочкин В. А., Зубова Е. В. К вопросу о трении и сдвигах при высоких контактных давлениях.— ФММ, 1960, 10, № 1, с. 135—139.

Исследования проводили на соединениях типа вал — втулка (рис. 58). Изучали соединения из сталей 20, 35 и 50 при контактных давлениях 3—24 даН/мм2. Комплексные исследования проводили на тонких срезах, выполненных перпендику- " лярно продольной оси сое- 20

Как видно из рис. 62, ход кривой соответствует зависимости изменения зон плотного контакта и схватывания от контактного давления (см. рис. 61) и отражает процесс их формирования. Такой же характер имеют кривые и для других частот ультразвука. Некоторое уменьшение амплитуды сигнала при контактных давлениях свыше 12—14 даН/мм2 объясняется возрастающим влиянием зоны деформированного металла, достигающей толщины 1—

Детали, требующие повышенной прочности: валы, оси, бойки молотов, коленчатые валы, кулачковые и фрикционные муфты, пластины цепей, тормозные ленты, шпонки, зубчатые колеса (при низких контактных давлениях), червяки средней прочности. Применяются, как правило, в термически обработанно.м состоянии после улучшения, нормализации




Рекомендуем ознакомиться:
Конструкция значительно
Конструкции электролизера
Конструкции аналогична
Конструкции благодаря
Конструкции цилиндров
Конструкции достигается
Конструкции гидравлических
Композиционных полимерных
Конструкции используют
Конструкции комбинированного
Конструкции конструкция
Конструкции крепления
Конструкции механических
Конструкции надежность
Конструкции некоторых
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки