Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Контролируемой атмосфере



Основной способ сварки плавлением — электродуговая сварка — имеет много разновидностей, связанных со степенью механизации, — ручная, полуавтоматическая, автоматическая, с применением различных защитных веществ — толстого покрытия на электродах (при ручной сварке), флюсов, защитных газов или порошковой проволоки при механизированной сварке, контролируемой атмосферы (защитных газов или вакуума) при некоторых способах дуговой и электронно-лучевой сварки. Сварка плавлением применяется для весьма широкого круга цветных металлов и сплавов, а также неметаллов — стекла, керамики, графита.

Окисление и обезуглероживание поверхности часто происходит при нагреве в пламенных или электрических печах без контролируемой атмосферы. Поэтому дают припуск на шлифование, что удорожает и усложняет технологию изготовления термически обрабатываемых деталей. Контролируемая искусственная атмосфера в термических печах является радикальным способом устранения или уменьшения этого дефекта.

Обезуглероживание и окисление поверхности происходит при нагреве в пламенных или электрических печах без контролируемой атмосферы Увеличиваются припуски на механическую обработку деталей. Желательно

Как было указано выше, прогресс в технологии термической обработки определяется также применением контролируемых атмосфер. В 1930— 1940 гг. применение контролируемых атмосфер преследовало цели защиты стальных полуфабрикатов (ленты, проволоки, листа) от окисления и обезуглероживания [102, 103, 223, 224, 268—273]. На Ленинградском метизном заводе и на заводе «Красная Этна» в Горьком впервые были внедрены процессы светлого отжига стальной малоуглеродистой ленты. В качестве контролируемой атмосферы применялся аммиак и продукты его частичного сжигания (рис. 26). В настоящее время сфера применения контролируемых атмосфер неизмеримо расширилась. Контролируемые атмосферы применяются с целью:

26. Внешний вид установки для получения контролируемой атмосферы На — Н20 — N2 с частичным сжиганием диссоциированного аммиака

224. Смирнов А. В., Белоручев Л. В. Практические способы создания контролируемой атмосферы в термических печах.—«Сообщения Центрального института металлов», 1934, № 17.

Испытания материалов на износ, сопровождающиеся схватыванием материалов трения, можно проводить на различных универсальных установках трения, позволяющих задавать широкие диапазоны скоростей скольжения и имеющих устройства для изменения объемных температур и создания контролируемой атмосферы (среды), в том числе вакуума.

При применении контролируемой атмосферы того или иного назначения требуемый по процессу постоянства состав газовой фазы

Фиг. 131. Схема приготовления контролируемой атмосферы Hj — Н2О — N3 из аммиака. /— баллоны с аммиаком; 2— испаритель аммиака; 3 — диссоциатор; 4 — камера частичного сжигания; 5—воздуходувка; 6 — водяные затворы; 7 — скруббер для охлаждения газа водой; 8 — камера холодильной машины; 9 — холодильная машина; 10—абсорбер с силикагелем; 11 — воздухонагреватель адсорбера; а — краны на баллонах; б — редукционный клапан; в — горелка камеры сжигания; г — приборы для регулирования подачи в камеру горения газа

Фиг. 133. Схематический чертёж газогенератора для приготовления контролируемой атмосферы типа СО—

Фиг. 134. Внешний вид установки для приготовления контролируемой атмосферы ГГ(тип СО-СО2—NJ).

Для сварки тугоплавких и активных металлов, часто выполняемой вольфрамовым электродом, для улучшения защиты нагретого и расплавленного металлов от возможного подсоса в зону сварки воздуха используют специальные камеры (сварка в контролируемой атмосфере). Небольшие детали помещают в специальные камеры, откачивают воздух до создания вакуума до 10~* мм рт. ст. и заполняют инертным газом высокой чистоты. Сварку выполняют

Для сварки в контролируемой атмосфере крупногабаритных изделий находят применение обитаемые камеры объемом до 450 м3. Сварщик находится внутри камеры в специальном скафандре с индивидуальной системой дыхания. Инертный газ, заполняющий камеру, регулярно очищается и частично заменяется. Для доступа сварщика в камеру и поп,ачи необходимых материалов имеется система шлюзов. При крупногабаритных изделиях используют переносные мягкие камеры из полиэтилена, устанавливаемые на поверхности изделия. После их продувки и заполнения защитным газом сварку выполняют вручную или механизированно. Для этих же целей используют подвижные камеры (рис. 37 , г), представляющие собой дополнительную насадку на уширенное газовое сопло горелки. Сварка в этом случае обычно выполняется автоматически.

способу защиты — струйная, в контролируемой атмосфере;

По способу защиты различают местную и общую защиту свариваемого узла (сварку в контролируемой атмосфере). Основным способом местной защиты является струйная защита шва. При этом способе защитная среда в зоне сварки создается газовым потоком центральной, боковой или комбинированной подачей газа (рис. 46). При центральн ш подаче газа дуга (рис. 46, а), горящая между электродом и основным металлом, со всех сторон окружена газом, подаваемым под небольшим избыточным давлением из сопла горелки, -расположенного концентрично оси электрода. Этот способ защиты является наиболее распространенным. Боковую подачу газа применяют ограниченно. В ряде случаев с целью экономии инерт-

Особым видом диффузионной сварки является сварка в контролируемой атмосфере, при которой в качестве защитных газов используют водород, аргон, гелий.

Баланс энергии в вакуумной дуге (рис. 2.53) показывает, что часть энергии на анод приносится непосредственно с катода. Вследствие интенсивного выделения теплоты на электроде-аноде коэффициент наплавки растет до 35...40 г/(А-ч). Это почти в 2 раза больше, чем при сварке под флюсом. Стоимость сварки в вакууме оказывается в ряде случаев ниже, чем в контролируемой атмосфере, а качество шва достаточно высокое.

отжиг - термическая обработка материалов (напр., металлов, полупроводников, стёкол), заключающаяся в нагреве их до определ. темп-ры, выдержке и последующем медл. охлаждении. О. способствует снятию механич. напряжений, повышению пластичности, улучшению обрабатываемости и т.д. О. в контролируемой атмосфере проводят для изменения состава в-ва. См. также Изотермический отжиг.

РАДИАЦИОННАЯ ПОВЕРХНОСТЬ НАГРЕВА - поверхность экранов и пароперегревателей котла, располож. в топке и воспринимающих энергию излучения продуктов сгорания. '"' РАДИАЦИОННАЯ ТЕМПЕРАТУРА Ге-л а - хар-ка излучающего тела. За Р.т. тела принимают темп-ру абсолютно чёрного тела, при к-рой его полная яркость энергетическая (во всём интервале частот от 0 до °°) равна полной энергетич. яркости данного тела. РАДИАЦИОННАЯ ТРУБА - нагреватель в виде трубы из жаропрочной стали или корунда, внутри к-рой сжигают газообразное (иногда жидкое) топливо. Р.т. устанавливают в печах для термич. обработки металлич. изделий, к-рые не должны соприкасаться с продуктами сгорания топлива (нагрев в контролируемой атмосфере или воздухе). Между Р.т. и нагреваемым телом происходит лучистый теплообмен. Р.т. из жаропрочной стали применяют для нагрева изделий до 950 "С, корундовые - до 1200 °С. РАДИАЦИОННАЯ химия - раздел химии, изучающий хим. процессы, возбуждаемые действием ионизирующих излучений. Осн. задачи: исследование влияния ионизирующих излуче-

Путем изменения соотношений осей эллипса и эксцентриситета можно на поверхности образца концентрировать лучистую энергию с различной плотностью, добиваясь равномерного всестороннего нагрева (например, для цилиндрических образцов) или одностороннего (для образцов прямоугольного сечения, листовых образцов). В качестве источника лучистой энергии используется высокоинтенсивная электрическая дуга переменного тока с коаксиальным расположением угольных электродов 1 и 2. Дуга помещена в кварцевую трубку 3 и стабилизируется вихрем инертного газа посредством цилиндрического завихрителя 4. Последнее обстоятельство полностью изолирует рабочую полость печи от продуктов горения угольной дуги. Нагрев образца осуществляется в контролируемой атмосфере, для этого его устанавливают в кварцевой трубке 10. Охлаждение образца осуществляется сжатым газом. Форма печи в виде эллиптического цилиндра позволила распределить тепловой поток равномерно по длине образца. Высота эллиптического цилиндра обусловлена размером высокотемпературной части дуги — столбом и кратерами, т. е. элементами, излучающими свыше 90% энергии всей дуги.

Вопросы теории теплофизических и физико-химических явлений, сопутствующих плазменному напылению, рассмотрены в монографии В. В. Кудинова [8], В книге [9], написанной им совместно с В. М. Ивановым, даны практические рекомендации по защите различных материалов и конструкций плазменными покрытиями, описано оборудование и технология. Особенностям формирования плазменных покрытий из металлов, окислов и тугоплавких соединений на воздухе и в контролируемой атмосфере посвящена монография В. Н. Костикова и Ю. А. Шестерина [10]. В двух последних литературных источниках имеются сведения о методах испытаний и свойствах плазменных покрытий, приведен справочный материал. Интересным представляется подход в монографии Г. Г. Максимовича, TJ. Ф. Шатинского и В. И. Копылова [11] к разрушению материалов с плазменными покрытиями. Анализируются различные варианты механизмов упрочнения и разупрочнения композиции «основной металл — покрытие» с точки зрения изменения потенциального энергетического барьера и динамики дислокаций у поверхности раздела. Проводится оригинальная аналогия между процессами образования и разрушения покрытий.

Частицы наносимого материала в газовой среде нагреваются до высоких температур и, находясь в воздушной атмосфере, могут окисляться. На поверхности частиц во время движения образуется пленка окислов, которая переходит в покрытие. Поэтому границы между частицами формируются с участием окислов. При разрушении окисных пленок может происходить сплавление металлических частиц. Напыление в контролируемой атмосфере, исключающей окисление, приводит к сплавлению частиц по всем поверхностям контактирования [61].




Рекомендуем ознакомиться:
Конструкции технологические
Конструкции топочного
Конструкции требуется
Конструкции возникает
Конструкции устанавливают
Композита состоящего
Конструкции значительно
Конструкционные пластмассы
Конструкционных жаропрочных
Конструкционных легированных
Конструкционных порошковых
Конструкционная автоматная
Конструкционной легированной
Конструкционное демпфирование
Конструкционную прочность
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки