Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Короткими участками



Неметаллические упругие элементы выполняют однородными резиновыми (или полиуретановыми), резиноволокнистыми с короткими волокнами и резинокордными. Резиновые элементы обладают повышенной податливостью, но меньшей несущей способностью, применяются при меньших моментах. Хорошо работают на сжатие.

Перекрестная укладка одинакового числа слоев в двух направлениях образует композиционные материалы с ортотропией в осях, направленных вдоль биссектрис угла между волокнами в соседних слоях. Материалы с переменным углом укладки по толщине одинакового числа слоев в направлениях 0, 60 и 120° условно называют материалами звездной укладки (1:1: 1). Они являются изотропными в плоскостях, параллельных плоскостям укладки слоев. Трансверсально-изотропными являются и многонаправленные материалы, в которых одинаковое число слоев укладывается в направлениях, я/n, 2л/п, ..., л, (п ^> 3), а также хаотически армированные в одной плоскости короткими волокнами. При использовании в качестве арматуры обычных однослойных тканей получаются композиционные материалы со слоистой структурой (тек-столиты). Возможны различные комбинации структур: ткань может быть уложена так, что направления основы во всех слоях совпадают или между направлениями смежных слоев образуется некоторый заданный угол. Кроме того, угол укладки и число слоев по толщине материала могут изменяться. В зависимости от этого можно выделить три основных вида слоистых структур: симметричные, антисимметричные и несимметричные. К первому виду относятся материалы, обладающие симметрией физических и геометрических свойств относительно их срединной плоскости, ко второму виду — материалы, обладающие симметрией распределения одинаковых толщин слоев, но угол укладки волокон (слоя) меняется на противоположный на равных расстояниях от срединной плоскости. К несимметричным структурам относятся материалы, не обладающие указанными выше свойствами.

Получение оценок эффективных упругих модулей для компо- ; зиционных материалов, армированных короткими волокнами, — I задача чрезвычайно сложная. Для композитов с ориентирован- / ными короткими волокнами оценки были найдены Халпином / и Пагано (Халпин [61], Халпин и Пагано [63]) с использованием , уравнений Халпина — Цая.

Оценки для эффективных упругих модулей композитов, армированных произвольно ориентированными короткими волокнами, были найдены в работах Нильсена и Чена [123] и Хал-пина и Пагано [62]. Для того чтобы получить выражение модуля Юнга для композита, армированного случайно ориентированными волокнами, Нильсен и Чен [123] осреднили значение модуля Юнга для композита с параллельными волокнами, определенное для произвольного направления, по всем возможным направлениям. Из-за громоздкости вычислений они не указали аналитического выражения для эффективного модуля Юнга, но представили обширные графические результаты.

МаСЛов Б. П., Нелинейные упругие свойства материалов, армированных однонаправленными короткими волокнами, Прикл. механика, 12, № 10 (1976).

Первоначально при выборе матрицы и волокна для всех систем предполагали использовать те же основные принципы, что и для модельных систем. Джех и др. [22] показали справедливость правила смеси для композитов как с непрерывными, так и с короткими волокнами, избрав для этого систему медь — волокно. Медь ,и вольфрам, по существу, взаимно не растворимы и не взаимодействуют химически; соответственно они не образуют соединений. Таким же образом Саттон и др. [38] на модельной системе серебро — усы сапфира убедительно продемонстрировали эффект упрочнения нитевидными кристаллами. Степень взаимодействия между серебром и усами сапфира даже меньше, чем между медью и вольфрамом, поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с расплавленным серебром те же авторы напыляли на поверхность са'пфира никель. Однако связь между никелем и сапфиром была, вероятно, чисто механической, а на поверхности раздела никель — сапфир твердый раствор не образовывался. Поэтому не удивительно, что Хиббард [21] в обзоре, -представленном в качестве вводного доклада на конференции 1964 г. Американского общества металлов, посвященной волокнистым композитным материалам, счел необходимым заключить: «Для взаимной смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость и реакционная способность были малы или вообще отсутствовали». Это условие, как правило, реализуется для определенного типа композитных материалов, а именно, ориентированных эвтектик. Во многих эвтекти-ках предел растворимости несколько изменяется с температурой, что, вообще говоря, является причиной нестабильности, хотя в известной степени и компенсируется особым кристаллографическим соотношением фаз. Однако в большинстве практически важных случаев это условие не выполняется. После конференции 1964 г. основные успехи были достигнуты в области управления состоянием поверхности раздела между упрочнителем и матрицей. Ни серебро, ни медь не являются перспективными конструкционными материалами. Что же касается реакций между практически важными матрицами и соответствующими упрочнителями, то они очень елож-ны и могут приводить к самым разнообразным типам поверхностей раздела.

Большое внимание уделяется исследованию композитов с короткими волокнами, особенно систем с нитевидными кристаллами. Считается, что эти системы позволят использовать чрезвычайно высокую жесткость, присущую лишь нитевидным кристаллам, при одновременном повышении вязкости композита. Возможность реализации потенциально высоких свойств таких композитов определяется, очевидно, поверхностью раздела.

Простейший анализ таких композитов провели Келли и Тайсон [33], а также Кокс [13]. В обеих работах предполагалось, что передача напряжений от матрицы через волокно описывается простой моделью запаздывания сдвига. Согласно этой модели, нагрузка на волокно передается лишь за счет возникновения напряжений сдвига на поверхности раздела волокно — матрица. Влиянием соседних волокон, концов рассматриваемого и последующего волокон и влиянием сложного напряженного состояния пренебрегают. Этот простой подход (рис. 12) позволяет сделать элементарные механические расчеты ряда важных характеристик композитов с короткими волокнами. Авторы работ [13, 33], показали, что существует «длина передачи нагрузки» (минимальная длина короткого волокна, начиная с которой оно нагружается до того же уровня, что и бесконечно длинное волокно), и развили соответствующую концепцию критической длины волокна. Кроме того, они рассчитали распределение напряжений сдвига на поверхности раздела в окрестности конца волокна (рис. 13).

Хотя эти работы внесли существенный вклад в основные представления о композитах с короткими волокнами, развитый в них механический подход является чрезмерно упрощенным. Поэтому рассчитанные по этой модели распределения напряжений сдвига на поверхности раздела не согласуются с экспериментальными данными (рис. 13).

К сожалению, из-за сложности задачи более строгая обобщенная теория композитов с короткими волокнами не была создана. Помимо трудностей, которые обусловлены неоднородностью напряженного состояния у концов волокон, значительные сложности возникают из-за наличия множества геометрических переменных. Влияние некоторых переменных (обычно в сочетании с одной или двумя другими) исследовали и оценивали количественно. К этим переменным относятся: содержание волокон, отношение модулей волокна и матрицы, отношение длины волокна к диаметру, величина зазора между концами волокон, форма конца волокна, наличие близлежащих разрывов в других волокнах, потеря связи и возникновение пластического течения.

Таким образом, не вызывает сомнения, ,что напряженное состояние на поверхности раздела в композит.ах с .короткими волокнами крайне сложно. Действительно, в, этом :сдучае напряженное состояние на поверхности раздела может быть наиболее жестким, поскольку, помимр значительных осевых, радиальных и тангенциальных нагрузок, поверхность должна противостоять воздействию еще большего сдвигового напряжения.

При сварке короткими участками шов и околошовная зона длительное время находятся в нагретом состоянии. Помимо изменения структур, это увеличивает и протяженность зоны термического влияния. Последующие слои термически воздействуют на ранее наплавленные швы, имеющие структуру литого металла, и создают в них зону термического влияния, строение и структура которой значительно отличаются от зоны термического влияния в основном металле, подвергавшемся прокатке. Эта зона на участке перегрева обычно не имеет крупного зерна и характеризуется мелкозернистыми структурами с повышенными пластическими свойствами.

Таким образом, при сварке низколегированных сталей (особенно термоупрочненных) получение равнопрочного сварного соединения вызывает некоторые трудности и поэтому требует применения определенных технических приемов (сварка короткими участками петермоупрочнениых сталей и длинными термоунроч-ненных и др.). Протяженность участков зоны термического влияния, где произошло заметное изменение свойств основного металла под действием термического цикла сварки (разупрочнение или закалка), зависит от способа и режима сварки, состава и толщины металла, конструкции сварного соединения др.

При сварке короткими участками по горячим предварительно наложенным швам

Рис. 121. Термический цикл металла околошовной зоны при слоштой сварке короткими участками:

При многослойной сварке короткими участками необходимо определить длину участка, при которой температура околошовной зоны до прихода тепловой волны от каждого последующего слоя не успеет понизиться ниже допустимой величины Гв.

Однако, если сваривается среднелегированная сталь с повышенным содержанием углерода, то даже при многослойной сварке короткими участками практически не удается избежать закалки металла околошовпой зоны на мартенсит, так как длительность распада аустенита значительно больше, чем время пребывания металла при температурах выше температур мартенситиого превращения в процессе сварки.

Рис. 122. Номограмма для расчета продолжительности нагрева выше определенной температуры различных сечений при сварке короткими участками каскадным методом в зависимости от продолжительности действия btc источника:

Сначала выполняют облицовку 1-м слоем. Сварку выполняют короткими участками, валиками небольших сечений [FH = (6 -г--i- 8)da) вразброс с перерывами для охлаждения шва и околошовной зоны до температуры 50—60° С. На 1-й слой наносят 2-й поперечными валиками, затем 3-й. После 3-го слоя можно применять режимы с несколько большей погонной энергией, но также с перерывами, чтобы зона разогрева чугуна была небольшой. Для уменьшения напряжений полезно применять проковку средних слоев.

зированнуго сварку короткими участками электродной проволокой марок Св-08ГС или Св-08Г2С диаметром 0,8—1 мм в углекислом газе. Сила сварочного тока составляет 50—75 Л, напряжение дуги 18—21 В, скорость сварки 10—12 м/ч.

Сварку медно-железными электродами всех типов следует выполнять таким образом, чтобы не допускать сильного разогрева свариваемых деталей: на минимально возможных токах, обеспечивающих стабильное горение дуги, короткими участками вразброс, с перерывами для охлаждения свариваемых деталей.

Находят применение в промышленности электроды марок МНЧ-1 со стержнем из монель-металла и МНЧ-2 со стержнем из Константина. Обе марки имеют электродные покрытия вида Ф. Сварку выполняют электродами диаметром 3—4 мм, ниточным швом, короткими участками при возвратно-поступательном движении электрода, не допуская перегрева детали, для чего рекомендуются перерывы для охлаждения. Наплавленные валики в горячем состоянии следует тщательно проковывать ударами легкого молотка. Для заварки отдельных небольших дефектов на обрабатываемых поверхностях отливок ответственного назначения из серого и высокопрочного чугуна, пороков, выявленных на механически обработанных поверхностях изделий и при ремонте оборудования из чугунного литья, используют также железоникеле-вые электроды с стержнем из сплава, содержащего 40—60% Ni и 60—40% Fc.




Рекомендуем ознакомиться:
Конструктивного совершенства
Конструктивном исполнении
Конструктивно нормализованный
Компрессионное прессование
Конструктивно технологическим
Конструктивно технологическому
Конструктивную прочность
Конструкторов машиностроителей
Конструкторский коллектив
Конструкторских документов
Конструкторских технологических
Конструкторской деятельности
Конструкторской разработки
Конструкторско технологических
Компрессора двигателя
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки