Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Коррозионной активностью



В настоящее время гибкие трубопроводы находят широкое применение в нашей стране при решении многих вопросов, связанных с ускоренной разработкой морских месторождений нефти и газа. Это связано с рядом присущих им качеств, дающих значительные преимущества при шельфовой добыче и транспорте углеводородного сырья перед жесткими трубопроводами. Среди их главных достоинств следует выделить гибкость, позволяющую осуществлять соединение подводного устьевого оборудования с контрольными линиями, связь между плавучими структурами, подачу сырой нефти или газа на загрузочные терминалы, использование при разработке малопроизводительных месторождений. При этом облегчаются укладка и адаптация трубопроводных систем к специфическим условиям морской добычи. Кроме того, появляется возможность повторного использования трубопроводов. При подборе соответствующих материалов и рациональных методов сочленения гибкие трубопроводы позволяют транспортировать по ним среды повышенной коррозионной агрессивности. За рубежом такие трубопроводные системы в определенном конструктивном решении интенсивно разрабатываются и внедряются, в частности, французской фирмой "Кофлексип". В нашей стране также существует ряд предприятий, достигших больших успехов в деле создания гибких трубопроводных систем на основе ТГО, находящих широкое применение в различных отраслях промышленности, но, к сожалению, несмотря на отмеченные достоинства, пока недостаточно представленных в нефтегазовых отраслях. При этом эффективное использование гибких металлических трубопроводов, их надежность и долговечность во многом определяют работоспособ-

в районах с различными климатическими условиями: во влажных субтропиках в центральном районе европейской части СССР (промышленная и сельская местность), в Заполярье. Эти испытания показали большое влияние на атмосферную коррозию металлов различных (газообразных и твердых) примесей воздуха, температуры и влажности воздуха. При этом было установлено, что основным фактором коррозионной агрессивности незагрязненной атмосферы является влажность, характеризуемая не общим количеством выпадающих в данной местности осадков, общим количеством дождливых дней либо значением средней влажности воздуха, а общим временем нахождения, влажной пленки на поверхности металла (длительностью увлажнения поверхности металла) т, которое может быть представлено (по А. И. Голубеву и М. X. Кадырову) следующим уравнением:

На скорость атмосферной коррозии металлов оказывают также влияние резкие температурные колебания. Резкое повышение коррозионной агрессивности при переходе от отрицательных к положительным температурам объясняется повышением скорости электрохимических процессов в связи с переходом пленки влаги па поверхности металла из твердого агрегатного состояния в жидкое.

ГОСТ 9.044 - 75. ЕСКЗС. Масла моторные рабочеконсервадионные. Методы определения коррозионной агрессивности в условиях окисления влажным воздухом .

Изготовление оборудования из имеющихся коррозионно-стойких материалов не всегда обеспечивает долговечность и надежность его в эксплуатации. В связи с этим возникает необходимость использования других методов противокоррозионной защиты, таких, как ингибирова-ние, технологические методы снижения коррозионной агрессивности среды, различные методы поверхностной обработки А здщиты конструкционных материалов.

Изготовление оборудования из имеющихся коррозионно-стойких материалов не всегда обеспечивает долговечность и надежность его в эксплуатации. В связи с этим возникает необходимость использования других методов противокоррозионной защиты, таких, как ингибирова-ние, технологические методы снижения коррозионной агрессивности среды, различные методы поверхностной обработки л здщиты конструкционных материалов.

Оборудование нефтяных и газовых месторождений по всей технологической линии (добыча, транспорт, хранение, переработка) подвергается воздействию гетерогенной среды, состоящей из двух несмешивающихся фаз: углеводород - электролит. Агрессивность среды определяется физико-химическим состоянием и составом водной и углеводородной фаз, однако "инициатором" коррозионного процесса всегда бывает вода. Вода в газожидкостный поток попадает из двух источников: она конденсируется из перенасыщенных паров при снижении температуры газового потока по мере его продвижения из пласта либо пластовая вода захватывается газовым или нефтяным потоком. За критерий коррозионной агрессивности скважины нельзя брать только количество добываемой воды — необходимо учитывать соотношение воды и углеводородной фазы. Величина водонефтяного отношения для конкретных месторождений может быть использована в качестве специфического параметра для характеристики и прогнозирования коррозии на нефтепромыслах [10] .

В тех случаях, когда в качестве длительно функционирующего дозатора ингибитора в поднимаемую на поверхность среду используют призабойную зону скважин, ингибитор закачивают в продуктивный пласт, если его порода не содержит повышенного количества глинистых фракций. Адсорбционную емкость глин обычно компенсируют избытком ингибитора при первой обработке. При выборе ингибитора, растворителя и продавочной жидкости необходимо учитывать возможность образования устойчивых эмульсий, разбухания глин и снижения продуктивности скважин при гистерезисе смачивания. С помощью заливочного агрегата 10—20 %-ный раствор ингибитора задавливают в пласт. Объем продавочной жидкости рассчитывают с учетом объема заполнения колонны насосно-компрессорных труб. Для наиболее полной адсорбции ингибитора на породах пласта скважину не эксплуатируют в течение 1—2 сут. При возобновлении эксплуатации скважины ингибитор начинает поступать в добываемую продукцию, скорость десорбции ингибитора с твердых пород пласта наиболее резко снижается в первые 5 сут, вместе с тем в это время она остается более высокой, что способствует быстрому формированию защитной пленки на металле [10]. Последующие малые концентрации ингибитора способствуют непрерывному восстановлению и сохранению защитной пленки на поверхности оборудования в течение длительного времени. Продолжительность между закачками ингибитора обычно составляет 3—18 мес и зависит от типа, состава и строения пласта, дебита скважины, коррозионной агрессивности среды и других факторов.

ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ БУРОВЫХ РАСТВОРОВ

ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ СРЕД ПРИ НЕФТЕДОБЫЧЕ

ХАРАКТЕРИСТИКА КОРРОЗИОННОЙ АГРЕССИВНОСТИ СЫРЬЕВОГО ПРИРОДНОГО ГАЗА

СОЛИ В ПРИРОДНЫХ ВОДАХ. В природных пресных водах содержатся растворенные соли кальция и магния, концентрация которых зависит от происхождения и расположения водоема. Вода с высокой концентрацией этих солей называется жесткой, с низкой — мягкой. Мягкая вода обладает большей коррозионной активностью, чем жесткая. Это было обнаружено за много лет до того, как удалось выяснить причину данного явления. Например, оцинкованные баки для горячей воды в Чикаго служили 10—20 лет (в воде оз. Мичиган содержится 34 мг/л Са2+, 157 мг/л растворенных веществ), в то время как в Бостоне (5 мг/л Са2+, 43 мг/л растворенных веществ) такие баки выходили из строя через 1—2 года. В жесткой воде на поверхности металла естественным путем откладывается тонкий диффузионно-барьерный слой, состоящий в основном из карбоната кальция СаСО8. Эта пленка дополняет обычный коррозионный барьер из Fe(OH)2, уже упоминавшийся в начале главы, и затрудняет диффузию растворенного кислорода к катодным участкам. В мягкой воде защитная пленка из СаСО3 не образуется. Однако жесткость воды не единственное условие возможности образования защитной пленки. Способность СаСО3 осаждаться на поверхность металла зависит также от общей кислотности или щелочности среды, рН и концентрации растворенных в воде солей.

вания характеризуется повышенной температурой, давлением и коррозионной активностью рабочей среды. Степень агрессивности рабочих сред обусловлена, с одной стороны, обводненностью и содержанием кислых компонентов, сернистых и хлористых соединений, с другой - наличием коррозионно-активных компонентов в реагентах в процессах подготовки и переработки рабочих сред. Доминирующим фактором повреждаемости материала оборудования для подготовки и высокотемпературной переработки нефти и газа является высокая степень напряженности конструктивных элементов, нестационарность нагружения и коррозионная активность рабочих сред. Необходимо также отметить в силу конструктивных особенностей обследуемых объектов большие поверхности контакта металла с рабочей средой.

Оценка надежности сложных систем, к которым относится нефтегазохимический комплекс ОНГКМ, является приоритетной задачей в связи с высокой коррозионной активностью и экологической опасностью сероводородсодержащих сред, а также продолжительным (более 20 лет) сроком эксплуатации оборудования и трубопроводов. На основе накопленной информации сформирована автоматизированная база данных, содержащая характеристики отказов основных элементов комплекса. Последние включают насосно-компрессорные трубы и их муфты, обсадные трубы, специальные фланцы, шлейфовые и соединительные трубопроводы, факельные линии, метаноло-проводы, запорно-регулирующую и предохранительную арматуру, аппараты УКПГ, аппараты ОГПЗ, детали аппаратов, резервуары. Характеристики отказов отражают их причины, срок эксплуатации оборудования, время его ввода в действие и отказа.

Стальные образцы или элементы конструкции выдерживают в натурной среде в течение промежутков времени •с„(1)~(4), а затем ускоренно разрушают в модельной среде, обладающей более высокой коррозионной активностью. При этом получают значения, соответствующие времени разрушения тт(1)~(4>.

Значительной коррозионной активностью обладает и большинство биоцидов. Так, например, гидрохлорид, хлор и диоксид хлора не только коррозионноактивны, но и образуют агрессивные побочные продукты.

Димеризация меркаптанов приводит к образованию бисуль-фидов, которые разлагаются до соединений серы, при определенных условиях также обладающих значительной коррозионной активностью [186].

На предприятиях нефтеперерабатывающей, нефтехимической отраслей промышленности находят применение все виды оборудования оболочкового типа. Значительный удельный вес на этих предприятиях составляют технологические трубопроводы. Такая широкая номенклатура применяемого оборудования объясняется многообразием физико-механических и химических процессов нефтепереработки, химической и нефтехимической технологии, широким диапазоном эксплуатационных параметров и разнообразной коррозионной активностью рабочих сред.

Основным требованием к испытаниям на коррозионную усталость является проведение их в условиях, максимально приближающихся к условиям службы металла в конструкциях. Не рекомендуется для ускорения испытаний применять среды, отличающиеся большой коррозионной активностью, так как это может изменить механизм развития коррозионно-усталостных процессов. Это относится и к виду нагру-жения. при котором проводят испытания. Возможно мягкое нагружение, когда в процессе всего испытания постоянными являются действующие напряжения и жесткое нагружение, когда в течение всего испытания сохраняется неизменной амплитуда деформации.

Применим вычислительную модель TL-логики к описанию функционирования колонного аппарата нефтепереработки или нефтехимии. Колонна является типичным примером реагирующей системы. Текущее состояние аппарата определяется комплексом внешних воздействий: температурой, давлением и коррозионной активностью рабочей среды; ветровыми нагрузками; нагрузками от трубопроводной обвязки и т. д. Каждый из этих факторов имеет стохастический характер. Переход колонны в новое состояние является реакцией на случайные воздействия.

Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пыли и высокой относительной влажности. Электрохимический процесс в морской атмо'сфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насыщает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых.

Иногда в продукции скважин встречаются простейшие органические кислоты жирного ряда (уксусная, муравьиная и др.). Тем не менее ввиду малой концентрации они играют второстепенную роль по сравнению с коррозионной активностью других агрессивных компонентов.




Рекомендуем ознакомиться:
Контактирующим поверхностям
Компрессора необходимо
Контактные перемещения
Контактных экономайзерах
Контактных жидкостей
Контактных осветлителей
Контактных теплообменниках
Контактных устройств
Контактным экономайзером
Контактным поверхностям
Контактная поверхность
Контактной деформации
Компрессора составляет
Контактной температуры
Контактное плавление
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки