Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Коррозионного воздействия



3. Абыагильдин Й.М., РВЛИМЬЯНОВ Э.С., даткуллин Р.А., Краснов В.И. Исследование коррозионного состояния резервуаров для хранения нефти и нефтепродуктов не СШУНПЗ.-В кн.;Интенсификация нефтехимических процессов как факта повышения эффективности средств производства.-

-ведёт паспортизацию основных фондов и готовой продукции с оценкой их коррозионного состояния;

Во втором томе (том 1. "Основы теории и практики применения" вышел в 1997 г. под ред. Д. Л. Рахманкулова) приведен ретроспективный анализ коррозионного состояния и технологий ингибитор-ной защиты оборудования и трубопроводов Оренбургского и Астраханского нефтегазоконденсатных месторождений. Рассмотрены методы диагностики, прогнозирования дефектности и оценки остаточного ресурса металлоконструкций, эксплуатирующихся в условиях воздействия серо-водородсодержащих сред. Особое внимание уделено методологии разработки ингибиторов коррозии под напряжением, анализу позитивных и негативных моментов в применении ингибиторов отечественными и зарубежными фирмами.

1. Анализ коррозионного состояния и прогнозирование дефектности технологического оборудования Оренбургского нефтегазоконденсатного месторождения ............. 7

Во втором томе монографии "Ингибиторы коррозии" авторы постарались обобщить многолетний опыт диагностики коррозионного состояния и ингибиторной защиты оборудования и трубопроводов крупнейших нефтегазовых объектов России и, в первую очередь, Оренбургского и Астраханского газоконден-сатных месторождений.

АНАЛИЗ КОРРОЗИОННОГО состояния

Классификация отказов по периодам эксплуатации (рис. 196) и видам оборудования (рис. 19в и 20) показывает общую тенденцию к увеличению их количества в промежутке от 15 до 20 лет. Это объясняется повреждением насосно-компрессорных труб и их муфт в данный период времени (рис. 20а) и проведением большого объема вырезок дефектных участков соединительных трубопроводов, обнаруженных с помощью внутритрубной дефектоскопии. По мере накопления опыта обработки данных внутритрубной дефектоскопии и в результате разработки методики оценки потенциальной опасности дефектов количество вырезок из труб удалось уменьшить (рис. 206). После 10-15-летней эксплуатации аппаратов УКПГ при проведении комплексной диагностики в металле многих из них обнаружены водородные расслоения, что обусловило необходимость замены этих аппаратов. В период эксплуатации до 20 лет наблюдалось также повышенное количество отказов деталей аппаратов УКПГ и ОГПЗ (рис. 20в). Меньше отказов оборудования и трубопроводов было отмечено во временном интервале эксплуатации более 20 лет, что объясняется отсутствием полных данных, а также проведением эффективного ингибирова-ния коррозионных сред, своевременного контроля коррозионного состояния оборудования и выполнением планово-профилактических работ (ППР).

— проведение повторных прогонов внутритрубных дефектоскопов-снарядов позволяет анализировать изменение коррозионного состояния трубопроводов во времени и повышать объективность оценки агрессивности рабочих сред, скорости коррозии трубопроводов и эффективности противокоррозионных мероприятий.

Анализ коррозионного состояния металлоконструкций ОНГКМ свидетельствует о том, что ступенчатые расслоения, пронизывающие материал стенок оборудования оболочкового типа более чем на 50%, являются недопустимыми.

Данные периодического контроля коррозионного состояния металла оборудования подтверждают результаты оперативной оценки поведения водородных расслоений. Так, в сечении, нормальном к срединной поверхности, вблизи очага разрушения трубопровода 0720x22 мм, транспортирующего сероводород-

К наиболее актуальным мероприятиям по обеспечению надежности и работоспособности металлоконструкций скважин относятся контроль коррозионного состояния и техническая диагностика фонтанной арматуры, колонных головок и внутри-скважинного оборудования. Диагностику проводят с целью периодической оценки технического состояния скважин при капитальном ремонте и геофизических исследованиях.

Одновременное воздействие на металл коррозионных сред и механических напряжений вызывает коррозионно-механическое разрушение оборудования, связанное с проявлением взаимосопряженных механохимических явлений. Помимо рассмотренных, наиболее опасных для магистральных трубопроводов видов КМР, таких, как КР и МКУ, следует остановиться на их разрушении в виде общей коррозии, ускоренной воздействием механических напряжений (механохимическая коррозия). Вследствие коррозии стенок сосудов давления и соответствующего их утонения происходит увеличение кольцевых растягивающих напряжений. Согласно теоретическим представлениям механохимии металлов, это вызывает рост скорости коррозии и еще большее утонение стенок. В связи с зтим прогнозирование долговечности сосудов давления, базирующееся на предпосылке постоянства скорости коррозии в течение установленного ресурса, дает изначально завышенное ее значение. Поэтому для реальной оценки долговечности необходимо проанализировать изменение кольцевых напряжений в стенке трубы, связав это изменение с интенсивностью коррозионного воздействия. Впервые подобный подход был реализован в [36]. Однако полученные при этом расчетные зависимости оказываются неудобными для практического использования. Кроме того, предложенный подход не учитывал того факта, что механохимические явления начинают существенно проявляться при напряжениях, превышающих предел текучести стали. Последнее на реальных конструкциях. эксплуатирующихся на общем фоне упругих напряжений и деформаций. может быть достигнуто только в концентраторах напряжения, где и реализуются условия для протекания механохи-мической коррозии.

С переходом на переработку сернистых и высокосернистых нефтей обострилась проблема защиты оборудования для производства кокса от коррозионного воздействия сред коксования.

Многие сосуды и аппараты в процессе эксплуатации испытывают малоциклвое нагружение. При одновременном действии коррозионно-активных рабочих сред и переменных во времени нагрузок процессы разрушения металлов заметно ускоряются. Ниже дана методика оценки остаточного ресурс элементов оборудования при малоцикловом нагружении. Вначале рассмотрим случай, когда контролирующим параметром циклического нагружения является заданная деформация (жесткое нагружение). Характерное поцикловое нагружение деформаций и напряжений в образце в условиях коррозионного воздействия рабочих сред показано на рис.5.2. Характер изменения напряжений зависит от циклических харктеристик стали. Для циклически упрочняющихся сталей отмечается по-цикловой рост напряжений (до определенной наработки), а для циклически разупрочняющихся - их снижение (см. рис.5.2,д). В конструктивных элементах из циклически стабилизирующихся сталей напряжения от цикла к циклу должны оставаться неизменными, несмотря на коррозионное растворение металла. В образцах из разупрочняющихся сталей наблюдается тенденция снижения цикловых напряжений.

При коррозионной усталости наблюдается снижение предела усталости по сравнению с пределом усталости металла в отсутствие коррозионного воздействия агрессивной среды. Пределом коррозионной усталости или коррозионной выносливости называется то максимальное напряжение, которое может выдержать образец при данном числе циклов в условиях коррозионного воздействия. Предел коррозионной усталости является условной величиной, а не истинным пределом, так как металл при длительных выдержках разрушится и без знакопеременных напряжений, а лишь от одной коррозии. Поэтому предел коррозионной усталости обусловливают числом циклов знакопеременных нагрузок, которые при испытаниях выдерживают образец металла при данном напряжении, т. е. цифровые значения предела коррозионной усталости относят к определенной базе испытаний (числу циклов).

Ранее было указано, что подземные металлические сооружения, помимо коррозионного воздействия грунтов, часто подвергаются также воздействию блуждающих токов. Защита металлических конструкций от блуждающих токов может быть осуществлена различными электрическими способами, основанными на разрыве электрической цепи, отводе блуждающих токов

коррозионная стойкость. Поэтому детали из магниевых сплавов должны защищаться от коррозионного воздействия.

где сг0 — предел выносливости гладкого полированного образца из данного „материала при данном виде упрочняющей обработки; k\ — коэффициент качества обработки; k2 — коэффициент коррозионного воздействия; /с3 — коэффициент, учитывающий повреждение поверхности при эксплуатации в результате износа; k4 — коэффициент, учитывающий частотность циклов; &5 - коэффициент, учитывающий степень ударности нагрузки; k6 — коэффициент, учитывающий температурный режим работы детали; fc7 ~^ЭФ"-фициент, учитывающий неоднородность материала, и рассеивание харак-

Влияние коррозионного процесса на усталость выражается главным образом в ускорении пластической деформации, сопровождающейся образованием выступов и впадин. Именно поэтому разрушение от коррозионной усталости не является результатом аддитивного действия коррозии и усталости, а всегда больше их суммы. Такое влияние коррозии объясняет также, почему уровень устойчивости к коррозионной усталости в большей степени определяется коррозионной стойкостью, чем прочностью на растяжение. При низкой частоте нагружения предел коррозионной усталости снижается, так как увеличивается время коррозионного воздействия за один цикл [81 ]. КРН и коррозионная усталость имеют разные механизмы, поэтому чистые металлы, устойчивые к КРН, подвержены действию коррозионной усталости в той мере, в какой они подвержены общей коррозии.

Свинцовые покрытия на стали получают погружением в расплав или электроосаждением. Для улучшения сцепления горячих покрытий с основным металлом в расплав обычно добавляют несколько процентов олова. Если вводится значительное количество олова (например, 25 %), то основу с покрытием называют луженой жестью *. Покрытия из свинца или свинцово-оловя-нистых сплавов стойки к атмосферным воздействиям, причем образующаяся в порах ржавчина подавляет дальнейшее течение коррозионного процесса. В почвах защитные свойства свинцовых покрытий невысоки. Их используют при кровельных работах и для защиты внутренней поверхности бензобаков автомобилей от коррозионного воздействия проникающей воды. Свинцовые покрытия нельзя использовать в контакте с питьевой водой и пищевыми продуктами вследствие токсичности солей свинца даже в малых количествах (см. разд. 1.3).

коррозию. Их применяют для временной защиты ответственных частей механизмов (например, шарикоподшипников и т. п.) от коррозионного воздействия влаги при транспортировке и хранении. Их достоинствами по сравнению с защитными смазками являются простота применения, а также возможность быстрого использования защищенных изделий без предварительного удаления смазки. К недостаткам относятся усиление коррозии ряда цветных металлов, обесцвечивание некоторых пластиков и необходимость довольно тщательной изоляции изделия при упаковке для предотвращения улетучивания ингибитора. Последнее требование относительно легко выполнить, применяя упаковочную бумагу, которая с внутренней стороны пропитана ингибитором, а с внешней имеет покрытие, препятствующее его испарению.

Сосуды со стенками средней толщины (до 40 мм) широко используются в нефтегазохимическом аппаратостроении как технологические аппараты различных производстенных назначений, а также как емкости для хранения и транспортирования жидкостей и сжиженных газов. Нередко требуется защита рабочей поверхности аппарата от коррозионного воздействия среды, сохранения прочности при высоких температурах, вязкости и пластичности материала несущих конструктивных элементов при низкой температуре. Поэтому используемые материалы весьма разнообразны: углеродистые, жаропрочные и высоколегированные стали, медь, алюминий и их сплавы. Так как для обеспечения необходимого срока




Рекомендуем ознакомиться:
Контактных поверхностях
Контактных термических
Контактными деформациями
Компрессора производится
Контактным устройством
Контактная выносливость
Контактной жесткости
Контактной поверхностью
Контактной выносливости
Контактное термическое
Контактного формования
Контактного нагружения
Контактного сопротивления
Контактному напряжению
Контактно поверхностные
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки