Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Коррозионно агрессивных



Использование хозяйственно-бытовых сточных вод' в парогене-рирующих установках, в частности в испарителях, вызывало опасение, что присутствующие в них органические вещества могут ухудшать коррозионно-агрессивные и накипеобразующие свойства концентрата. Эти опасения были связаны с опытом использования для питания парогенерирующих установок природных вод или производственного конденсата, загрязненных кислыми или потенциально кислыми органическими соединениями. Присутствие их

Наличие повышенных напряжений и появление концентратов котловой воды, содержащей коррозионно-агрессивные агенты, вызывает возникновение коррозионного растрескивания в этой части парогенератора. Поэтому такие щели следует ликвидировать, например, с помощью заварки. Если насыщенный пар загрязнен хлоридами и едким натром, то такие щели могут возникать даже на стенках пароперегревателей парогенераторов барабанного типа. Если при подаче питательной воды в водяной объем парогенератора в ней содержится остаточный кислород, уже имеющееся коррозионное растрескивание может усилиться. При подаче питательной воды в промывочное устройство она, перед поступлением к поверхностям нагрева, вследствие вскипания полностью освобождается от растворенного в ней кислорода. Поэтому, чтобы уменьшить возможность возникновения коррозии и выноса с паром продуктов коррозии, питательную воду в парогенератор рекомендуется подавать только через паропромывочное устройство так, как показано на рис. VI-1.

Общей особенностью контактно-поверхностных котлов является коррозионная активность воды, нагретой путем контакта с дымовыми газами. Хотя в некоторых конструкциях и предусмотрены специальные конструктивные и режимные меры по дегазации воды, коррозионно-агрессивные газы (03 и С02) даже

В заключение краткого обзора известных конструкций контактных и контактно-поверхностных котлов необходимо подчеркнуть их достаточно высокие теплотехнические качества: экономию газообразного топлива (не менее 10 %) и металла на их изготовление. Можно согласиться с авторами работы [173, 174], полагающими, что возможности и преимущества контактных и контактно-поверхностных котлов до конца еще не выявлены, и предлагающими новые области их применения. Вместе с тем есть и вопросы, требующие решения. Общей особенностью контактно-поверхностных котлов является коррозионная активность воды, нагретой путем контакта с дымовыми газами. Хотя в некоторых котлах и предусмотрены специальные конструктивные и режимные меры по дегазации воды, коррозионно агрессивные газы — Ог и СОа — даже в небольших количествах весьма активны при высокой температуре, близкой к 100 °С, и способствуют коррозии собственно котла и системы теплоснабжения. Известны, например, случаи быстрого выхода из строя стальных радиаторов, включенных в систему теплоснабжения от контактно-поверхностных котлов ФНКВ-1.

Металлы, применяемые в теплоэнергетическом хозяйстве предприятий, обладают способностью вступать во взаимодействие с соприкасающейся средой (пар, вода, газы), которая содержит различные коррозионно-агрессивные примеси (кислород, кислоты, щелочи и др.). В результате воздействия агрессивной среды вследствие химических и электрохимических процессов происходит коррозионное разрушение металла, которое обычно начинается с поверхности и быстро продвигается вглубь. Коррозионные поражения принимают различный вид и форму в зависимости от характера процесса. Особенно опасны точечные разъедания металла и появление в нем трещин, быстро приводящих металл в негодность. Химическая коррозия металла в теплоэнергетике протекает при высоких температурах под действием перегретого пара. Такой вид коррозии обычно называют

§ 275. Аппараты, в которых перерабатываются коррозионно-агрессивные продукты, должны быть изготовлены из соответствующих коррозионно-стойких материалов или иметь антикоррозионную защиту.

Для деталей изделий, эксплуатирующихся в герметизированных объемах при наличии органических материалов, способных при старении выделять летучие коррозионно-агрессивные вещества, вызывающие коррозию покрытия, не допускается применять цинковые и кадмиевые покрытия без дополнительной защиты лакокрасочными покрытиями.

Это явление отмечено в металле нефтегазового оборудования на месторождениях, содержащих коррозионно-агрессивные компоненты — сероводород и диоксид углерода (углекислый газ) [2.1 ], в напряженных элементах строительных конструкций, работающих в атмосфере промышленных городов с повышенной кислотностью дождевых бсадков [2.2], и др. Преждевременное разрушение оборудования в среде сернистого газа связано с коррозионным сероводородным растрескиванием (СР) и вспучиванием стали, вызванными водородом (ВР). Активный (атомарный) водород, проникающий в сталь, образуется в данном случае в результате электрохимических процессов, идущих на поверхности стали при участии сероводорода, углекислого газа и влаги.

Отложения в значительной степени влияют на протекание коррозионных процессов, затрудняя диффузию кислорода к поверхности металла. Поры в слое отложений образуют своего рода капилляры, по которым к поверхности металла поступает морская вода. Капиллярный эффект проявляется тем значительнее, чем меньше размеры частиц отложений. В порах адсорбируются многие коррозионно-агрессивные составляющие морской воды. Кроме перечисленных факторов, на скорость коррозии влияют минералогическая природа и смачиваемость отложений. В слое морской воды, непосредственно контактирующей со слоем отложений, рН меньше, чем в объеме воды в целом, и меньше, чем в воде, заполняющей капилляры в слое отложений.

Наблюдаемое на практике загрязнение конденсатов анионами различного состава оказывает существенное влияние на его коррозионно-агрессивные свойства. Нитриты, хроматы и другие •окислители, как правило, снижают общую коррозию, но могут вызывать ее локализацию при недостаточной концентрации для полной пассивации металла.

Надежность и долговечность автомобилей, тракторов во многом определяется коррозионно-механическим износом двигателя внутреннего сгорания, в частности, коррозионными процессами, протекающими в парах трения ци-линдропоршневой группы, газораспределительного механизма, подшипниках коленчатого вала. Многочисленными работами показано, что при эксплуатации двигателя в моторном масле накапливаются коррозионно-агрессивные продукты окисления и разложения масел, неполного сгорания сернистых топлив, галогенсодержащих антидетонаторов [2-4]. При остановке и охлаждении двигателя конденсация влаги на поверхностях трения приводит к образованию кислого электролита с рН около 3, способствующего интенсивному развитию электрохимической коррозии. Установлено, что ресурс двигателей, работающих с перерывами, снижается на 40% в сравнении с двигателями непрерывно работающих машин [5].

ции сильфона на этих же наиболее нагруженных участках за счет геометрической концентрации напряжений могут создаваться уп-ругопластические деформации, которые, суммируясь с остаточными, в присутствии коррозионной среды вызывают его коррозионно-механическое разрушение, происходящее путем распространения коррозионно-механических трещин в окружном направлении. Кроме того, основные физико-механические свойства материалов, применяемых для изготовления сильфонов УЧЭ (повышенные прочность и хрупкость при весьма малом запасе пластичности), делают их склонными к коррозионному растрескиванию, особенно з присутствии таких коррозионно-агрессивных агентов, как сероводород, углекислота и хлориды.

ПРИМЕНЕНИЕ ИНГИБИТОРОВ КОРРОЗИИ ДЛЯ ЗАЩИТЫ ПРОМЫСЛОВОГО ОБОРУДОВАНИЯ В КОРРОЗИОННО-АГРЕССИВНЫХ ВОДНЫХ И ДВУХФАЗНЫХ СРЕДАХ

Применение ингибиторов коррозии для защиты промыслового оборудования в коррозионно-агрессивных водных и двухфазных средах...... 153

Если учесть, что для многих современных машин характерен не только широкий диапазон скоростей и нагрузок, но и воздействие коррозионно-агрессивных сред, высоких и низких температур, наличие вакуума, электромагнитных влияний, ядерных облучений и других воздействий, то отыскание закономерностей протекания процесса разрушений возможно только на основе применения методов и средств физико-химической механики материалов.

Изучение влияния совместного действия силовых и физико-химических факторов на поведение твердых тел в процессе их эксплуатации привело к появлению нового направления—физико-химической механики материалов [106]. Здесь делается попытка привлечения физики твердого тела, физической химии, химии твердых состояний и неравновесной термодинамики для изучения деформации и разрушения твердых тел, работающих в условиях одновременного действия нагрузок, температур, коррозионно-агрессивных сред и ядерных облучений.

Контроль за протеканием коррозии металла трубной системы конденсаторов турбин несомненно следует предусматривать на стадии проектирования этих агрегатов. Эта рекомендация в первую очередь касается блоков сверхкритических параметров, для которых совершенно необходимо руководствоваться правилом выбора конструкционных материалов трубок конденсаторов с учетом коррозионно-агрессивных свойств охлаждающей воды [2].

Стендовые испытания на ударную коррозию, применяющиеся в частности, для конденсаторных трубок, проводятся путем воздействия на металл струей коррозионно-агрессивных растворов либо морской воды.

для постоянного расхода пара на барботаж возрастание в воде начальной концентрации коррозионно-агрессивных газов приводит к увеличению их концентрации в деаэрированной воде. При концентрации кислорода более 1,5—2 мг/кг и свободного диоксида углерода более 1—1,5 мг/кг установленная правилами технической эксплуатации глубина дегазации не достигается, что требует применения химических методов их удаления;

Потенциально кислые соединения, опасные своим разрушающим действием на металл оборудования в зонах образования «первичного* конденсата, периодически определяют при отборе проб конденсата из проточной части турбин. При этом концентрация коррозионно-агрессивных соединений на два порядка выше в этих зонах, чем в конденсате турбин (рН снижается до 4,0— 5,0). При химическом анализе отложений на лопатках, разрушенных в результате коррозии, находят до 12 % хлоридов (остальное — соединения кремния и натрия).

Хлориды и едкий натр вызывают, по-видимому, наиболее тяжелые коррозионные поражения. В турбине имеются две зоны, в которых коррозия и коррозионное растрескивание под действием агрессивных веществ, таких, как хлориды и едкий натр, проявляются наиболее часто: зона соприкосновения с перегретым паром; зона вблизи линии насыщения, где достигается температура кипения растворов соединений, содержащихся в каплях влаги.

Графитовые и угольные волокнистые материалы могут применяться для теплоизоляции различных объектов, при изготовлении емкостей для коррозионно-агрессивных жидкостей, фильтров, теплостойких прокладок и др. Температурная область применения до +400° на воздухе, при более высокой темп-ре —• в защитной атмосфере.




Рекомендуем ознакомиться:
Контактными деформациями
Компрессора производится
Контактным устройством
Контактная выносливость
Контактной жесткости
Контактной поверхностью
Контактной выносливости
Контактное термическое
Контактного формования
Контактного нагружения
Контактного сопротивления
Контактному напряжению
Контактно поверхностные
Контактно реактивной
Контактную усталость
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки