Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Коррозионно механическом



В книге ообощен комплекс вопросов, посвященных повышению корро-зионно-механической стойкости нефтегазовых трубопроводных систем. Приводятся современные представления о механизмах протекания наиболее распространенных видов коррозионно-механического разрушения.' Рассмотрены вопросы диагностики и прогнозирования долговечности трубопроводов.

На втором этапе, при растворении металла, трещина развивается в основном перпендикулярно поверхности трубы. Причем в предыдущих исследованиях осталось без должного внимания обратимое чередование первого и второго этапов в процессе развития КР. При этом происходит подготовка основы для их попеременного проявления. Такой тип коррозионно-механического разрушения (без рассмотрения третьего этапа) требует наличия невысоких уровней механических напряжений. Это подтверждается отмеченными выше имеющимися отечественными и зарубежными литературными данными, согласно которым развитие КР проявлялось в интервале кольцевых растягивающих напряжений порядка 0,4 -0,7 от.

Наиболее опасным видом коррозионно-механического разрушения магистральных трубопроводов, наряду с рассмотренным в главах 1-4 коррозионным растрескиванием, является малоцикловая коррозионная усталость [12, 38], характерная в отличие от первого для магистральных нефтепродуктопроводов.

В связи со все возрастающей напряженностью работы газопромыслового и газоперерабатывающего оборудования, усилением коррозионной активности продукции газовых и газоконденсатных месторождений необходим целенаправленный выбор материалов для его изготовления, в том числе — для изготовления сильфонов УЧЭ КИП и А, работающих, как уже указывалось, в условиях малоцикловой коррозионной усталости. Однако при расчетных оценках долговечности сильфонов до настоящего времени не учитывается влияние коррозионно-механического фактора, оказывающего большое воздействие на их работоспособность. Поэтому были проведены исследования МКУ долговечности дисперсионно-твердеющих сплавов аустенитного класса 36НХТЮ, 68НХВКТЮ и 40НКХТЮМД, обладающих повышенной упругостью и широко использующихся для изготовления сильфонов. При этом учитывались реальные условия их эксплуатации, устанавливались сроки их работы и выбирались оптимальные по составу и долговечности материалы.

Разновидностью коррозионно-механического изнашивания является изнашивание при фреттинг-коррозии (to fret — разъедать) — разрушение постоянно контактирующих поверхностей в условиях тангенциальных микросмещений без удаления продуктов износа. Проявляется на посадочных поверхностях колец подшипников качения, зубчатых колес, шлицевых соединений.

Особо опасным видом коррозионно-механического разрушения является коррозионное растрескивание, реали-

Окислительным изнашиванием называют процесс разрушения поверхностных структур, образующихся на металлических поверхностях при трении в присутствии атмосферного кислорода. В отличие от других видов коррозионно-механического изнашивания оно происходит при отсутствии агрессивной среды и характеризуется малой шероховатостью изнашиваемых поверхностей, на которых образуются пленки окислов. Эти пленки разрушаются при длительном трении и образуются вновь, а продукты износа состоят из окислов.

механического изнашивания. В зависимости от условий взаимного перемещения сопряженных деталей различают два вида коррозионно-меха-нического изнашивания. Изнашивание в условиях значительного относительного смещения деталей, т.е. в условиях скольжения, называют коррозионно-механическим. Изнашивание в условиях малых колебательных относительных перемещений называют фреттинг-коррозией.

Рассмотрим механизм коррозионно-механического изнашивания деталей цилиндропоршневой группы двигателей внутреннего сгорания. Поршневые кольца и гильзы цилиндров двигателей, изготовленные из литейных чугунов, при наличии электролита составляют друг с другом гальванические пары. Пары образуются и между структурными составляющими чугуна — перлитом, графитом, фосфидной эвтектикой, а внутри перлита - между ферритом и цементитом. Кроме того, вследствие неравномерности температуры в областях с более высокой температурой возникают анодные участки. Сжигание в цилиндрах дизелей топлива с повышенным содержанием серы увеличивает интенсивность изнашивания поршневых колец и гильз в 3-Л раза за счет следующих процессов. Сера сгорает, образуя окислы SO2, при этом только 1% ее идет на образование SO.i путем каталитического окисления SO2. Cep-

Рассмотренный пример позволяет лучше понять следующие общие закономерности процесса коррозионно-механического изнашивания. Агрессивные среды, разрыхляя поверхности трения, усиливают процесс изнашивания; температура в зоне трения значительно активизирует процесс коррозии и тем самым интенсифицирует процесс изнашивания. Увеличение контактного давления и скорости скольжения повышает температуру на поверхности трения и интенсивность изнашивания. С увеличением нагрузки возрастает напряжение в областях фактического контакта, что может привести к пластическому взаимодействию выступов шероховатых поверхностей и даже к схватыванию или микрорезанию. Для снижения возможности развития таких явлений необходимо разрабатывать узлы трения с минимальными нагрузками в паре и применять материалы с высокой твердостью.

Результаты испытаний и промышленного применения ингибитора на Свидницком и Опошнянском газоконденсатных месторождениях, в продукции которых содержится соответственно 0,3 % С02 + 10 — 14 мг/л H2S и4%С02, показали его высокую эффективность. Так,после ввода ингибитора в парообразном состоянии в шлейф опытной скважины Свидницкого газоконденсатного месторождения прекратились пропуски газа (рис. 40), а в результате закачки ингибитора в затрубное пространство скважины в течение 5 сут на Опошнянском газоконденсат-ном месторождении содержание ионов Fe2+ в водном конденсате снизилось с 54,5 мг/л до закачки до 8 мг/л к концу закачки ингибитора [15] . Высокая летучесть и защитная способность позволяют широко применять его для защиты газопроводов от углекислотной и углекислотно-сероводородной коррозии и коррозионно-механического разрушения. Для защиты от углекислотной коррозии скважинного оборудования газоконденсатных скважин месторождений разработан ингибитор ГРМ, активным началом которого является смесь жирных кислот и их сложных эфиров. Ингибитор ГРМ при дозировке 0,35-0,40 г на 1 кг добываемого конденсата или на 1 тыс. м3 газа газоконденсатных месторождениях Украины, в продукции которых содержится до 5 % С02 и до 0,002 % H2S, обеспечивает защитный эффект 96-98 %. Ингибитор вводят в затрубное пространство скважин в виде 25 %-ного раствора в газоконденсате. Кроме того, ингибитор может применяться для защиты нефтяного оборудования от коррозии, вызываемой минерализованной водой, содержащей кислород. В этом случае ингибитор подается в затрубное

сто сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу. Особенностью разрушений при коррозионно-механическом воздействии является наличие на изломах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др.

видов силовых нагружении и при коррозионно-механическом воздействии в наводороживающих средах.

Исследования [138, 58, 141, 142 и др.] образования трещин при коррозионно-механическом разрушении металла содержат вывод об анодном состоянии вершины трещины, причем при микроскопически малых размерах анодной зоны в вершине трещины плотность анодного тока достигает, например, в определенных условиях единиц и десятков ампер с одного квадратного сантиметра. Поэтому можно полагать, что в вершине трещины сосредоточенным источником генерируется анодный ток определенной мощности <7, и найти из соотношения (261) распределение линейной плотности катодного тока по стенкам трещины на модели капилляра ограниченной длины /, нагруженного точечным источником в точке х = /:

Исследования [64, 155, 158, 159 и др. ] образования трещин при коррозионно-механическом разрушении металла содержат вывод об анодном состоянии вершины трещины, причем при микроскопически малых размерах анодной зоны в вершине трещины плотность анодного тока достигает, например, в определенных условиях нескольких единиц или нескольких ампер с одного квадратного сантиметра. Поэтому можно полагать, что в вершине трещины сосредоточенным источником генерируется анодный ток определенной мощности q, и найти из соотношения (274) распределение линейной плотности катодного тока по стенкам трещины на модели капилляра ограниченной длины I, нагруженного точечным источником в точке х = I:

Эффективность катодной защиты при коррозионно-механическом разрушении можно оценить по формуле:

свидетельствуют о коррозионно-механическом характере разрушения. Заметной разницы в структуре металла по лобовой и тыльной образующим нет. Количество окислов железа на внутренней поверхности трубы по лобовой образующей достигало 520 г/м2; учитывая низкие величины локальных тепловых потоков в месте образования рисок при работе на пыли, это явление само по себе не могло представлять существенной опасности.

Обобщены сведения по защите от коррозии компрессоров, работающих в разнообразных средах. Дан анализ конкретных случаев разрушения различных деталей и узлов вследствие неправильного выбора материалов для их изготовления, нарушения технологических режимов и других причин. Изложены современные представления о межкри-сталлитной коррозии и коррозионно-механическом разрушении, описаны способы борьбы с ними, рассмотрены вопросы консервации машин и оборудования на период от изготовления до монтажа.

При механическом, коррозионно-механическом (окислительном) и молекулярно-механическом воздействиях проявляются основные виды изнашивания (табл. 3). Причем различные виды изнашивания могут действовать как одновременно, так и последовательно; при взаимодействии один из них может задерживать или активизировать другие виды изнашивания.

разработка методики ускоренных испытаний подвижных сочленений на износостойкость при абразивном изнашивании, фреттинг-коррозии, коррозионно-механическом изнашивании, диспергировании, кавитации и эрозии и на контактную прочность в условиях воздействия коррозионно-активных сред и поверхностно-активных веществ;

окислительное, фреттинг-коррозия при коррозионно-механическом воздействии.

Электролитическое хромирование без подслоя меди и никеля применяется для повышения поверхностной твердости и износостойкости при механическом, коррозионно-механическом и абразивном видах изнашивания металлов и для восстановления размеров деталей.

КОНТАКТНОЕ ШДЕЛЕНИЕ МЕДИ ПРИ КОРРОЗИОННО-МЕХАНИЧЕСКОМ ИЗНОСЕ




Рекомендуем ознакомиться:
Контактным устройством
Контактная выносливость
Контактной жесткости
Контактной поверхностью
Контактной выносливости
Контактное термическое
Контактного формования
Контактного нагружения
Контактного сопротивления
Контактному напряжению
Контактно поверхностные
Контактно реактивной
Контактную усталость
Контрастность изображения
Компрессорных установок
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки