Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Коэффициентов температурного



Приведены теоретический расчет коэффициента сопротивления струи в шаровой ячейке; методика и результаты экспериментальных работ по гидродинамическому сопротивлению, среднему и локальному коэффициентам теплоотдачи при течении газа через различные укладки шаровых твэлов. На основе обобщенных критериальных зависимостей коэффициентов сопротивления и теплообмена разработана методика оптимизационных расчетов размера шаровых твэлов и геометрических размеров активных зон для различной объемной плотности теплового потока. Приводится количественный расчет по предложенной методике.

Наиболее полное исследование гидродинамического сопротивления шаровых насадок было выполнено сотрудниками ЦКТИ Р. С. Бернштейном, В. В. Померанцевым и С. Л. Шагаловой [28]. В более поздней работе этих же авторов был предложен на основе струйной теории Г. Н. Абрамовича теоретический метод расчета гидродинамического сопротивления как шаровых насадок, так и слоя из элементов неправильной формы и предложены обобщенные зависимости для коэффициентов сопротивления. Степенные зависимости параметров ячейки (относительной высоты hjd и относительного просвета п) выбирались авторами работы с учетом обоих типов насадок.

Гидродинамическое сопротивление различных шаровых укладок было исследовано автором работы совместно с Е. Ф. Яну-цевичем в 1959 г. на разомкнутых и замкнутых газодинамических трубах с воздушной средой, очищенной от влаги и паров воды. Ьыл определен коэффициент сопротивления слоя четырнадцати различных шаровых укладок. Значения объемной пористости, отношения (tf = DTp/rf) диаметров труб и шаров приведены в табл. 3.3, а коэффициентов сопротивления U — в табл. 3.4.

Экспериментальные значения коэффициентов сопротивления слоя ?ш

Результаты всех исследований, проведенных в МО ЦКТИ, по определению коэффициентов сопротивления слоя ?ш и струи Ястр различных укладок моделей шаровых твэлов в круглых трубах и модели активной зоны в изотермических и неизотермических условиях приведены в табл. 3.4 и на рис. 3.3. Из рисунка следует, что почти во всех опытах удалось достичь автомодельного режима течения, при котором изменение сопротивления А/7 зависит практически только от изменения квадрата скорости и плотности, а ?ш не зависит от числа Re. Отчетливо видно существенное влияние объемной пористости т шаровой укладки на коэффициент сопротивления слоя ?ш. Так, при изменении объемной пористости от 0,66 до 0,265 коэффициент сопротивления увеличивается примерно в 30 раз. Разброс опытных данных по коэффициенту сопротивления для определенной шаровой укладки не превышает ±10%; среднего значения, что указывает на достаточную степень точности измерения перепада давления и массового расхода. В п. 3.1 была теоретически определена зависимость (3.9) коэффициента сопротивления струи Астр от объемной пористости т и константы турбулентности астр.

Следует особо отметить полученные в работе [ 3] выражения для расчета коэффициентов сопротивления порошковых металлов из сферических частиц среднего диаметра dq

Отсюда следует зависимость коэффициентов сопротивления от размера частиц исходного порошка. Эта зависимость качественно сохраняется и для металлов из частиц другой формы [ 4]. В то же время пористые металлы из сферических частиц обладают минимальным сопротивлением по сравнению с другими порошковыми металлами. Поэтому выражения (2.8) позволяют оценить предельную минимально возможную величину коэффициентов сопротивления проницаемых металлов из порошка различной формы с известным средним размером частиц. Усложнение формы частиц сопровождается увеличением коэффициентов гидравлическо-

го сопротивления и показателей степени в зависимости от пористости. Расширение диапазона частиц в исходном порошке также приводит к увеличению коэффициентов сопротивления.

Если пористые порошковые металлы получены прессованием с последующим спеканием, то поверхностные слои из расплющенных частиц обладают повышенным со противлением, что может в некоторых случаях привести к зависимости коэффициентов сопротивления от толщины образца.

Коэффициенты а, /3 не зависят от вида фильтрующейся жидкости, поскольку они являются характеристиками пористой структуры. При исследовании сопротивления пористых металлов при различных температурах не обнаружено заметного изменения коэффициентов сопротивления. Только происходящие в материале структурные преобразования при высоких температурах или больших механических нагрузках приводят к изменению их гидравлических характеристик.

Большинство известных способов интенсификации теплообмена в каналах приводит к повышению гидравлического сопротивления. При этом для конкретного теплообменного устройства в зависимости от критерия оценки эффективности интенсификации положительный эффект достигается при соблюдении определенного условия между отношениями чисел Нуссельта Nu*/Nu и коэффициентов сопротивления ?*/? для каналов с интенсификацией (Nu*, ?*) и без нее (Nu, ?). Так, например, в [ 13] показано, что при интенсификации теплообмена в турбулентном потоке в каналах трубчатого теплообменного аппарата положительный эффект интенсификации, оцениваемый тремя различными критериями, достигается при выполнении степенной зависимости */? < (Nu*/Nu)3'5 .

Следует отметить, что высокий модуль углеродных волокон обусловлен преимущественной ориентацией графитовой структуры, возникающей при деградации исходного полимера. Из-за такой структуры свойства волокон являются сильно анизотропными. Особенно важна анизотропия прочности, модуля и коэффициентов температурного расширения, и она отражается в свойствах композитов, которые оказываются более анизотропными, чем аналогичные композиты на основе стеклянных волокон. Для данного типа волокна прочность и модуль композита при осевом растяжении зависят в первую очередь от объемной доли волокон и лишь в незначительной степени от состава используемой

— — анизотропия коэффициентов температурного расширения 365

Одним из серьезных недостатков стеклонаполненных композиционных материалов является низкая герметичность. Этот недостаток ограничивает область применения изделий из этих материалов. Для обеспечения герметичности изделий, используемых для транспортировки или хранения жидких и газообразных продуктов, а также изделий, работающих при избыточном внутреннем и внешнем давлении, производится плакирование внутренней или внешней поверхности изделия термопластичными полимерами. Такая плакировка может осуществляться несколькими способами: использование для герметизации трубы из термопласта, которая одновременно является оправкой при намотке труб из стеклопластика, нанесение полимерного покрытия в электростатическом поле и центробежным методом. Наиболее характерным дефектом такого типа изделий являются расслоения на границе плакирующего слоя и основного материала изделия. Кроме того, в процессе эксплуатации таких изделий (нагревание, охлаждение, деформации), вследствие различия коэффициентов температурного расширения, а также упругих характеристик, могут возникать дополнительные расслоения и трещины в пограничной области.

В большинстве случаев при высоких температурах, когда механическая прочность оказывается недостаточной, химическая стойкость и диэлектрическая прочность остаются еще удовлетворительными. Как указывалось выше, для увеличения жесткости и прочности возможно бронирование отдельных элементов или целого аппарата металлами и неметаллами. В этом случае бронирующий элемент воспринимает механические и термические нагрузки, возникающие вследствие различных коэффициентов температурного расширения фторопласта и брони. Несмотря на то, что бронированные элементы, благодаря податливости фторопласта под нагрузкой, работают успешно, предпочтение следует отдавать небронированным аппаратам и деталям, конструкция которых проще, а обслуживание дешевле.

Диаметр возвышения рекомендуется несколько меньше диаметра отбортовки (приблизительно равный d 4- 56). Установлено, что фланцевое соединение с отбортовкой на 90° в условиях большого диапазона рабочих температур может не обеспечить герметичности при снижении температуры вследствие различных коэффициентов температурного расширения фторопласта и металла. В таких случаях отбортовку выполняют под углом 45° и встык помещают дополнительную деталь. В необходимых случаях сжимающее устройство снабжается компенсационными пружинами. Иногда между фланцем и буртом помещается резиновая шайба, обеспечивающая герметичность соединения.

Подвод и отвод сетевой воды осуществляется через верхнюю водяную камеру. Нижняя водяная камера является поворотной. Соответствующей установкой перегородок в водяных камерах подогреватель выполняют двух- или четырехходовым по сетевой воде. Нижняя трубная доска имеет диаметр меньший, чем корпус подогревателя, и поэтому вся трубная система вместе с нижней водяной камерой свободно расширяется относительно корпуса подогревателя из-за различных температур и коэффициентов температурного расширения материалов трубок и корпуса.

технологического процесса изготовления биметалла, так и различием коэффициентов температурного расширения;

Отливки из серого чугуна подвергаются естественному старению (вылеживанию). При этом происходит уменьшение внутренних напряжений, которые неизбежно возникают при охлаждении отливок вследствие различных коэффициентов температурного расширения графита и металлической основы. Снижение внутренних напряжений интенсифицируется при вылеживании отливок на воздухе, когда добавляется термоциклическре воздействие от изменения погодных условий.

В литературе имеется описание лишь одного типа эмалевых тензочув-ствительных покрытий с рядом модификаций для исследования напряжений при повышенных температурах [7, 8]. Такое покрытие позволяет проводить исследования при температурах до 300° С, на его чувствительность не влияют влажность и незначительные колебания температуры, чем выгодно это покрытие отличается от .канифольного. К недостаткам разработанного до настоящего времени эмалевого тензочувствительного покрытия относится следующее. Состав таких покрытий весьма сложен [8]. Он представляет собой смесь (фритта) частиц определенной дисперсности элементоорганических и других соединений, состав которой дополнительно регулируется специальными порошковыми добавками. Из фритты и порошковых добавок готовят шликер, и окончательную регулировку состава производят путем введения в него боросиликата свинца. Такие операции необходимы для подбора и регулирования коэффициента температурного расширения эмалевого покрытия, так как разность коэффициентов температурного расширения материалов покрытия и детали определяет тензочувствительность эмалевого покрытия. Как было установлено в указанной выше работе, отношение коэффициентов температурного расширения состава эмали и материала детали должно быть в пределах от 1,1 до 3,0.

Для широкого применения метода хрупких тензочувствительных покрытий для исследований при нормальных температурах необходима разработка удобно выполняемого нетоксичного и неогнеопасного покрытия, не требующего при обычных испытаниях нагрева детали, обладающего достаточно стабильными требуемыми характеристиками при изменении температуры и относительной влажности и пригодного для исследования полей деформаций и напряжений в различных основных условиях испытаний деталей и узлов конструкций. Нестабильность поведения и ограниченность диапазона рабочих температур канифольных покрытий обусловлена, прежде всего, большим различием (до одного порядка) коэффициентов температурного расширения материалов покрытия и исследуемых стальных деталей, гигроскопичностью и низкой температурой размягчения материала покрытия. В связи с этим в Институте машиноведения проводится разработка хрупких покрытий со стабильными характеристиками, и одна из выполненных разработок покрытий нового типа со стабильными характеристиками относится к покрытию с наклеиваемой фольгой, имеющей оксидную пленку. Как показали проведенные эксперименты, могут быть получены на алюминиевой фольге оксидные пленки, выращиваемые электрохимическим путем, которые являются коррозион-ностойкими и при определенных условиях оксидирования получаются твердыми, прозрачными и достаточно хрупкими, т. е. дающими трещины при достаточно малых величинах деформации. Характеристики тензо-чувствительности охрупченных и наклеенных разработанными способами пленок оказываются стабильными.

Анодное оксидирование деталей из алюминия и его сплавов в электролитах на основе серной, щавелевой, хромовой и других кислот широко применяется в промышленности для получения теплостойких, износостойких, электроизоляционных, декоративных покрытий и для других целей [9]. Такие свойства оксидных пленок, как теплостойкость и коррозионная стойкость, а также незначительное различие коэффициентов температурного расширения материала оксидной пленки и конструкционных материалов послужили основными предпосылками для рассмотрения возможности применения их в качестве тензочувствительных покрытий со стабильными характеристиками.




Рекомендуем ознакомиться:
Коэффициентами теплового
Коэффициентам сопротивления
Коэффициента эффективности
Коэффициента армирования
Коэффициента динамической
Коэффициента готовности
Качественно одинаковы
Коэффициента контактного
Коэффициента массоотдачи
Коэффициента нефтеотдачи
Коэффициента обогащения
Коэффициента перегрузки
Коэффициента поперечной
Коэффициента приведенной
Коэффициента пропускания
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки