Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Количества электричества



Сталь является многокомпонентным сплавом, содержащим углерод и ряд постоянных или неизбежных примесей Mn, Si, S, Р, О, N, H и др., которые оказывают влияние на ее свойства. Присутствие этих примесей объясняется трудностью удаления части из них при выплавке (Р, S), переходом их в сталь в процессе ее раскисления (Мп, Si) или из шихты — легированного металлического лома (Cr, Ni и др.). Эти же примеси, но в больших количествах, присутствуют и в чугунах.

По химическому составу определяют, какие легирующие элементы (кроме Fe и С) и в каких количествах присутствуют в стали.

Температуры полиморфного превращения в легированной стали изменяются в зависимости от того, какие легирующие элементы и в каких количествах присутствуют в ней. Поэтому при выборе температур нагрева

Распределение концентраций продуктов горения, горючего и окислителя, поля температур и рассчитанное по составу газов изменение коэффициента избытка воздуха а по толщине пограничного слоя приведены на рис. 4. Из графика видно, что средняя во времени зона максимального тепловыделения («фронт» пламени) располагается в области средних значений a st; 0,6. Между стенкой и «фронтом» пламени, помимо С02, Н20 и газообразных углеводород овС„Нт, в значительных количествах присутствуют водород, СО и кислород.

Вследствие своей химической инертности золото находится в рудах почти исключительно в виде самородного металла. Химический состав частиц самородного золота переменный с вариациями в довольно широких пределах, но обычно с пробладанием золота. Типичные примеси в самородном золоте— серебро, медь, железо; в малых количествах присутствуют мышьяк, висмут, теллур, селен и другие элементы. Содержание золота в зернах самородного металла составляет 75—90 % (чаще всего около 85 %.), серебра—1 — 10 % (иногда до 20 % и даже 40 %), железа и меди — до 1 %. В медных рудах иногда встречается медистое золото, в медно-никелевых рудах — палладистое, платинистое, ро-дистое золото. Состав некоторых самородных минералов золота приведен в табл. 3.

динений, сплавляясь с содой и кварцем, образует жидкоте-кучий шлак, который принято называть силикатным, хотя помимо оксида кремния в нем в значительных и даже преобладающих количествах присутствуют окисленные соединения свинца, сурьмы, мышьяка, меди и т. д. Значительная часть окисленных соединений, обладая высокой летучестью (PbO, Sb2O3, As2O3, SeO2 и др.), переходит в пылегазовук> фазу.

Состав анодных шламов, получаемых при электролизе серебра, зависит от содержания золота в анодах и плотности тока. Чем выше содержание золота в анодах и плотность тока, тем богаче шлам по золоту. Обычно анодные шламы содержат 50—80 % Аи. Основная примесь в шламе— серебро, в меньших количествах присутствуют медь, теллур, платиновые металлы и т. д. Схема переработки анодных шламов приведена на рис. 129.

Донские руды делятся иа крепкие (кусковые), рыхлые и порошковые, по текстурным особенностям — на сплошные (массивные) и вкрапленные. Их примерный состав приведен в табл. 60, 61. Наибольшее количество кремнезема и фосфора содержится в рудах с кремнистым цементом, а оксидов железа — в рудах с железистым цементом. Фосфор концентрируется в карбонатах, фосфоритах и апатитах, содержание его составляет 0,003—0,05 %. Характерный химический состав цементирующих пород, по данным X. Н. Кадарметова, приведен в табл. 62. Основные сопутствующие минералы: серпентин (Н4М§з812О9) и различные карбонаты, количество которых составляет 5—40 % при средних значениях 8—15%, гидроксидов железа — от следов до 10% И свободных оксидов <3 %. В заметных количествах присутствуют марганец (0,08—0,29% МпО), никель (0,02—0,23% NiO), кобальт (до

Донские руды делятся иа крепкие (кусковые), рыхлые и порошковые, по текстурным особенностям — на сплошные (массивные) и вкрапленные. Их примерный состав приведен в табл. 60, 61. Наибольшее количество кремнезема и фосфора содержится в рудах с кремнистым цементом, а оксидов железа — в рудах с железистым цементом. Фосфор концентрируется в карбонатах, фосфоритах и апатитах, содержание его составляет 0,003—0,05 %. Характерный химический состав цементирующих пород, по данным X. Н. Кадарметова, приведен в табл. 62. Основные сопутствующие минералы: серпентин (Н4М§з812О9) и различные карбонаты, количество которых составляет 5—40 % при средних значениях &—15%, гидроксидов железа — от следов до 10% И свободных оксидов <3 %. В заметных количествах присутствуют марганец (0,08—0,29% МпО), никель (0,02—0,23% NiO), кобальт (до

ных водах, как правило, в определяемых количествах присутствуют только гидрокарбонатные ионы, а С _ = С . , поэтому для них характерно ОН н

Критические точки легированных сталей смещаются в зависимости от того, какие легирующие элементы и в каких количествах присутствуют в ней. Поэтому при выборе температур нагрева под закалку, нормализацию, отжиг или отпуск необходимо учитывать смещение критических точек (критические точки различных легированных сталей приведены в справочниках по термической обработке и в справочниках по котлотурбинным сталям).

В результате проведенных [3, 29] сравнительных электрохимических исследований трубных сталей в растворе 1н. NaHCO3 + 1н. Na,CO3 со скоростью развертки потенциала 1 мВ/с установлено, что плотность максимального анодного тока при температурах плюс 20 и 50° С составляла: для стали 17Г1С - 2,0 и 25,5 А/м2 и стали 17Г2СФ - 7,7 и 42 А/м2 соответственно. После подстановки полученных экспериментальных данных в (3.6) получаем следующие величины скоростей роста трещин: 17Г1С - 2,4 и 30 мм/год, 17Г2СФ - 9 и 50 мм/год при температурах 20 и 50° С соответственно, которые существенно превышают значения, наблюдаемые при отказах магистральных газопроводов. Это свидетельствует о том, что в расчетную зависимость (3.6), очевидно, некорректно подставлять максимальное значение плотности анодного тока, полученного при снятии потенциодинамической поляризационной кривой, хотя суммарное воздействие токов анодного растворения и вызывает электрохимический процесс КР. Поэтому в зависимость, основанную на законе Фарадея, следует подставлять не плотность максимального анодного тока, а интегральную энергетическую характеристику электрохимического процесса в виде выделяющегося количества электричества, приходящегося на единицу площади поверхности трубы с катодными отложениями. Тем более, что и геометрия трещин, как это было установлено (см. главу 1), в процессе ее развития изменяется. Это количество электричества было определено с помощью интегрирования плотности анодного тока по времени на образцах прямошовных труб типоразмером 178 х 2,15 мм и длиной 375 мм в модельном грунте, содержащем соли угольной кислоты. Внутри труб создавалось давление, формирующее в стенке трубы напряжение, составляющее 0,7 от. Количестве электричества определялось с помощью разряда электрохимической системы потенциостатом при ступенчатом изменении потенциала с шагом 0,1 В в интервале наложенных потенциалов минус 1,0-0,1 В (ХСЭ). При этом в каждом поддиапазоне изменения потенциалов дожидались установления стационарного значения тока, на что требовалось в условиях опыта до 24 часов на каждую экспериментальную точку, хотя в условиях эксплуатации магистральных газопроводов этот процесс активно-пассивного перехода может быть существенно более длительным. Таким образом

На основании изучения свойств металла очаговых зон разрушения газопроводов по причине КР была определена величина параметра а. Она составила, по данным изучения реальных очаговых зон разрушения магистральных газопроводов, 2 х 10 м4/ККл. (Ширина трещины 5 х 10"* мм, удельная площадь участка растрескивания S = 16 см2/11 трещин). При суммарно накопленном годовом изменении потенциала катодной защиты на локальном участке поверхности газопровода, имеющего повреждения изоляции, где и развивается процесс КР, на 0,5 В (от минус 1,0 до 0,5 В), выделяется 1,5 ККл/м2 количества электричества, которого достаточно для появления трещины глубиной 0,54 мм. Это соответствует реально наблюдаемым скоростям роста трещин (см. главу 2).

8) электрометрическим методом, состоящим, в определении количества электричества, необходимого для электрохимического восстановления пленки при помощи катодной обработки до металла или низшего окисла, что дает возможность рассчитать толщину пленки.

На основе законов Фарадея нетрудно подсчитать, какое количество металла должно осаждаться па катоде при прохождении через раствор соли определенного количества электричества или какое количество металла перешло в раствор при растворении анода. Однако практические данные всегда меньше теоретических. Это объясняется тем, что на выделение металла затрачивается лишь часть протекающего через систему тока, остальной ток расходуется на побочные электрохимические процессы, например на выделение водорода на катоде или (в случае анодного растворения) на разряд ионов ОН ' на аноде и т. п. Отношение массы металла, осадившегося на катоде или растворившегося на аноде, к теоретически вычисленному называется выходом металлов по току т]. Выход металла по току обычно исчисляется в процентах.

При низкой плотности блуждающих токов дополнительные разрушения вызываются действием локальных элементов. При высокой плотности тока в некоторых средах может выделяться кислород — это снижает коррозионные потери металла на единицу количества электричества. Амфотерные металлы (например, Pb, Al, Sn, Zn) корродируют и в щелочах, и в кислотах, поэтому они могут разрушаться не только на анодных участках, но и на катодных, где в результате электролиза накапливается щелочь.

В результате проведенных в УГНТУ сравнительных электрохимических исследований тр^ :ных сталей в растворе 1а. НаНСОэ + 1н. МагСОэ со скоростью развертки потенциала 1 мВ/с установлено, что плотность максимального анодного тока при температурах 20 и 50° С составляла: лая стали 17Г С - 2,0 и 25,б А/м? и ^талк 17Т2ОТ -7,7 и 42 А/м2 соответственно. После подстановки полученных экспериментальных данных в(2.8)получаем следующие величи~ы скоростей роста трешин: 17Г1С - 2,4 И 30 мм/год, 17Г20Ф - 9 и 50 мм/год при температурах 20 и 60° С соответственно, что существенно превышает значения, наблюдаемые при отказах МГ. Это свидетельствует о том, что в расчетную зависимость(2.8), очевидно, некорректно подставлять максимальное значение плотности анодного тока, полученного при снятии потенциодинамкческой поляризационной кривой, хотя суммарное воздействие токов анодного растворения и вызывает электрохимический процесс КР. Поэтом" в зависимость, основанную на законе Фарадея, следует подставлять не плотность максимального анодного тока, а интегральную энергетическую характеристику электрохимического процесса в виде выделяющегося количества электричества, приходящегося на единицу площади поверхности трубы с катодными отложениями. Тем более, что и геометоия трещин, как установлено в УГНТУ. в процессе «е развитие изменяется. Это количество электричества может быть определено с помощью интегрирования плотности анодного тока по времени. Оно определялось нами на образцах прямооювных труб типоразмером 178 х 2,16 мм и длиной 376 им в модельном грунте, содержацем соли угольной кислоты. Внутри труб создавалось давление, формирующее в стенке трубы напряжение, составляющее 0,7 бт. Количество электричества определялось с помощью равряда электрохимической системы потенциостатом при ступенчатом изменении потенциала с шагом 0,1 В в интервале наложенных потенциалов минус 1,0...0.1 В (ХСЭ). При этом в каждом поддиапазоне изменения потенциалов дожидались установления стационарного значения тока, на что требовалось в условиях опыта до 24 часов на каждую экспериментальную точку, хотя в условиях эксплуатации магистральных газопроводов этот процесс активно - пассивного перехода может быть существенно более длительным. Таким образом была снята потенциостатическая поляризационноя кривая, изображенная на рис. «2.4. Потенциалам в интервале минус 1.0...0,1 В (ХСЭ)

На основании изучения свойств металла очаговых зон разрушения газопроводов по причине КР была определена величина параметра а. Она составляла 2 • 10 м4 / ККл. В предположении суммарно накопленного годового изменения потенциала, на локальном участке поверхности газопровода, имеющего повреэдекия изоляции, где и развивается процесс КР, на 0,5 В Гот минус ±,0 до 0.5 В), выделяется 1,5 ККл/м2 количества электричества, которого достаточно для появления трещинк глубинол 0.54 мм. что близко к реально наблюдаемым скоростям роста трещин.

В связи с изложенным очевидно, что с помощью снятия потенцк-одинамических поляризационных кривых вовмало получение ;;знных только об относительной чувствительности материалов к КР, а для объективной количественной оценки процесса нэобходимо измерение количества электричества, выделяющегося при изменении потенциала катодной защиты в положительном направлении.

При переходе от основных единиц (т. е. тех, для которых хранятся специальные эталоны) к производным можно было бы устанавливать эти новые единицы совершенно произвольно и за единицу силы принять такую силу, которая произвольно выбранной определенной массе сообщает некоторое произвольно же выбранное определенное ускорение. Однако вся система единиц получается гораздо более стройной и все физические соотношения принимают более простой и удобный вид, если при установлении новых единиц определять их таким образом, чтобы в выражение новой величины через основные не входили никакие числовые коэффициенты. Тогда за единицу силы мы должны принять такую силу, которая массе, равной единице, сообщает ускорение, равное единице; за единицу количества электричества мы должны принять такое количество электричества, которое с равным ему количеством электричества на расстоянии, равном единице, взаимодействует с силой, равной единице, и т. д. Построенные по этому принципу системы единиц носят название абсолютных.

Переход от основных единиц (например, длины, массы и времени) к электрическим единицам может быть произведен уже упоминавшимся способом выбора единицы количества электричества. Тогда все

остальные электрические единицы устанавливаются при помощи трех основных единиц и единицы количества электричества; например, за единицу силы тока принимается такой ток, при котором за единицу времени через сечение проводника проходит единица количества электричества, и т. д. Такая система электрических единиц называется абсолютной электростатической системой единиц. Вместе с системой CGS она образует абсолютную систему единиц CGSE.




Рекомендуем ознакомиться:
Коаксиальными цилиндрами
Когерентные колебания
Когерентно связанные
Кожухотрубный теплообменник
Камвольном комбинате
Кольцевых направляющих
Кольцевыми канавками
Кольцевым движением
Кольцевой жесткости
Кольцевой сердечник
Кольцевое уплотнение
Кольцевом индукторе
Кольцевую поверхность
Колебаний динамической
Колебаний фундамента
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки