Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Механизмов прерывистого



Методом инверсии из дифференциального зубчатого механизма (см. рис. 3.18) получают три различных механизма (рис. 3.21). Так, остановкой звена 3 (рис. 3.21, а) или / (рис. 3.21, б) получаем два вида планетарных зубчатых механизмов с входным звеном / или h и 3 или h', остановкой звена h — водила — (рис. 3.21, в) получаем рядовой зубчатый механизм. Этот метод используется для синтеза зубчатых механизмов со ступенчато изменяющейся скоростью вращения выходного звена На рис. 3.22 изображена структурная схема механизма, составленного из одинаковых дифференциальных механизмов, показанных на рис. 3.18. Водила 3 и 3' обоих этих механизмов представляют собой одно звено, входные и выходные звенья — центральные зубчатые колеса / и /'. Механизм снабжен двумя муфтами 5 н 5', которые соединяют попарно звенья 1 и 4, 1' и 4', и двумя тормозами 6 и 6', превращающими звенья 4 и 4' в стойку. Включением муфты 5 и тормоза 6' механизм превращается в планетарный с входным звеном 3\ включением муфты 5' и тормоза б — в планетарный с выходным звеном 3, включением тормозов б и б' — в двухступенчатый планетарный механизм, а одновременным включением муфт 5 н 5' — в прямую передачу между звеньями / и /'.

Функции плотности распределения вероятностей акустических сигналов машин и механизмов представляют собой определенные на всей действительной оси неотрицательные непрерывные и почти всюду дифференцируемые функции. В качестве примера на рис. 2.1 изображено несколько функций плотности распределения ам^ плитуд вибраций одного из редукторов для различных значений нагружающего момента Мя '[37]. Легко видеть, что изменение режима работы редуктора сильно влияет на функции плотности

Интервал временной корреляции. Коэффициенты как взаимной, так и автокорреляции акустических сигналов машин и механизмов представляют собой убывающие функции от т. Начиная с некоторых значений задержки времени, коэффициенты (3.6) и (3.7) становятся исчезающе малыми, а сигналы, сдвинутые на это время, некоррелированными. В ряде практических задач требуется знать конкретное значение т, выше которого сигналы

В машинах и механизмах детали в процессе работы могут совершать колебательные движения, непосредственно относящиеся к рабочему процессу машины. Но есть и такие колебательные движения, которые связаны исключительно с малыми деформациями деталей. Так как детали реальных машин или звенья реальных механизмов представляют собой физические тела с присущей им способностью деформироваться под действием внешних сил, то при движении машины (или механизма) эти деформации вызывают перемещения, накладывающиеся на основное движение машины. Эти дополнительные перемещения обычно имеют колебательный

Среди многочисленных известных разновидностей групп * для теории механизмов представляют, в частности, интерес группы

Остановимся сначала на работах в области структуры механизмов, имея в виду, что структурный анализ и синтез механизмов представляют важный этап в начальной стадии проектирования механизмов.

При диагностировании механизмов суппортной группы токарных многошпиндельных автоматов удобен динамический способ, основанный на измерении крутящих моментов на РВ, его сущность описана выше. Измерение этого параметра производится с помощью съемных первичных преобразователей со встроенными микроусилителями [22]. В качестве примера на рис. 7.1 приведены типовые динамограммы дефектов (пунктирные линии) механизмов поперечных суппортов автомата модели 1А225-6 и его модификаций: 1 — нестабильное включение муфты ускоренного хода; 2, 3,4 — увеличение нагрузок на привод при отводе и подводе суппортов из-за повышенных сил трения в кулачковых механизмах и клиньях направляющих; 5,6 — преждевременное переключение фрикционной муфты; 4, 6 — неравномерность перемещения суппортов на рабочей скорости из-за дефектной регулировки клиньев в направляющих суппортов. Здесь же для сравнения сплошными линиями нанесены нормативные осциллограммы. Динамограммы дефектов механизмов представляют собой части осциллограмм крутящих моментов, записанных на отдельных участках цикла работы станков, которые имеют определенные дефекты в узлах. Дефекты создавались также искусственно путем разрегулировки механизмов у одного станка. Датчик крутящего момента устанавливается при проверке поперечных суппортов на свободном участке продольного РВ между коробкой передач и шпиндельной стойкой. Запись момента осуществляется при холостом ходе станка. При необходимости контроля станков с технологическими наладками крутящий момент записывается при полном цикле их работы. Зная оптимальные величины нагрузок для каждой наладки, можно оценить качество технологического процесса изготовления

тым, в то время как ускорение и сила имеют импульсный характер изменения. Спектр частот этих параметров вибраций является сплошным. Этот факт свидетельствует, о том, что при оценке влияния вибраций пневматических машин ударного действия на организм человека-оператора по виброперемещению или виброскорости учитываются не все физические факторы, вызывающие физиологические изменения и в первую очередь силовые параметры вибраций, имеющие импульсный характер изменения. Как известно, реакция механической системы на ударное воздействие зависит от формы и длительности импульса. Поэтому при изучении причин, вызывающих патологические изменения в организме человека-оператора, необходимо исследовать реакцию тела человека-оператора на импульсное воздействие различной формы и длительности. В существующих в настоящее время в СССР санитарных нормах допустимых уровней вибраций при работе с ручными механизированными инструментами принято, что вибрации этих механизмов представляют собой полигармонический процесс. Кроме того, в указанных нормах не учитывается форма и длительность вибрационного воздействия. Следует отметить, что в медицинских работах проводились исследования по физиолого-гигиенической оценке формы вибраций пневматических машин ударного действия [40].

и квадрата предельной Аф) ошибки положения. Если ошибки Д.д в партии механизмов представляют собой случайные величины, то

Особый вид направляющих механизмов представляют устройства, имитирующие пересечения поверхностей тел вращения плоскостью или поверхностями других тел вращения. Механизмы для воспроизведения различных плоских и пространственных кривых используют в оборудовании для разметки, раскроя, резания и сварки стыков труб и резервуаров различной формы. При образовании таких механизмов важно найти схему соединения звеньев, воспроизводящих пересекаемые поверхности (рис. 10.3.3). Такие механизмы обладают двумя или тремя степенями свободы.

В книге даются основные понятия и определения теории механизмов и машин, сведения о структурном анализе и синтезе схем механизмов и их классификация, сущность различных методов синтеза, его этапы, методика синтеза рычажных механизмов, зубчатых механизмов и зацеплений, механизмов прерывистого движения. Рассматриваются аналитические и графические методы кинематического анализа механизмов, основы динамического синтеза и анализа, методы силового расчета плоских рычажных механизмов без учета и с учетом сил трения, механизмов с высшими парами. Значительное внимание уделено основам теории машин-автоматов и их систем управления.

На рис. 6.26, а приведена принципиальная схема киносъемочного аппарата. Рулон неэкспонированной киноленты помещается в светонепроницаемую подающую касету 2, лз которой она постепенно вытягивается непрерывно вращающимся зубчатым барабаном 3, а затем, образуя петлю а, поступает в фильмовой капал 4, который обеспечивает ее фиксированное расположение относительно окна 5. Оптическое изображение снимаемого объекта формируется объективом 9 в плоскости светочувствительного слоя киноленты, находящейся напротив кадрового окна фильмового капала. Во время экспонирования кинолента должна быть неподвижна. Для фиксации изображения объекта и следующей фазе его движения кинолента передвигается вдоль фильмового канала строго па шаг кадра Н„ механизмом прерывистого движения (МПД) в. В момент передвижения киноленты световой поток, проходящий через объектив 9, перекрывается обтюратором 10. Затем кшюлен-а, образуя петлю а, поступает па зубчатый барабан 7, служащий для равномерной ее подачи в принимающую кассету 8. Петли она киноленты создают пеобхсдимый ее запас 1Л для прерывистого движения вдоль фильмового капала. Привод киносъемочного аппарата состоит из двигателя п передаточных механизмов. Тип двигателя выбирается в зависимости от характера съемок. В качестве механизмов прерывистого движения широко применяются грейферные рычажные и кулачковые механизмы. В грейферном механизме непрерывное вращательное движение входного звена — кривошипа преобразуется в движение выходного звена по замкнутой траектории. Выходное звено имеет одни пли несколько зубьев, которые продвигают киноленту на шаг кадра. Затем зубья выходят из перфорации и возвращаются в начальное положение и цикл движения повторяется, в результате чего кинолента движется прерывисто. Цикл работы грейферного механизма можно разбить на четыре фазы: вход зуба в перфорацию, протягивание кинолентj на шаг кадра, выход зуба из перфорации и возврат в исходное положение. Соприкосновение зуба грейфера е кинолентой сопровождается динамическим ударом. Для уменьшения удара о перфорационную перемычку угол входа зуба а должен быть близким к 90°. В этом случае составляющая скорости зуба грейфера в направлении фильмового капала будет мала. Для перемещения киноленты точно на шаг кадра необходимо, чтобы угол выхода р<90°. Для точной фиксации киноленты во время экспонирования применяется контргрейфер, зубья которого входят в перфорацию киноленты после выхода из нее зубьеп грейфера (рис, 6.26, в]. Фазовые углы движения кулачкового механизма коптргрейфера определяются из составленной для МПД циклограммы:

В тех случаях, когда необходимо передавать большие нагрузки с высокой надежностью и с плавным законом изменения ускорений ведомого звена, в качестве механизмов прерывистого движения применяют рычажные механизмы с низшими кинематическими парами или зубчато-рычажные механизмы, используя некоторые особенности кривых, описываемых точками звеньев, совершающих плоское движение.

7. Привести примеры применения рычажных, кулачковых механизмов и механизмов прерывистого движения; к каким группам они относятся?

В тех случаях, когда необходимо передавать большие нагрузки с высокой надежностью и с плавным законом изменения ускорений ведомого звена, в качестве механизмов прерывистого движения применяют рычажные механизмы с низшими кинематическими парами или зубчато-рычажные механизмы, используя некоторые особенности кривых, описываемых точками звеньев, совершающих плоское движение.

Глава XXI. Синтез механизмов прерывистого движения ....... 395

СИНТЕЗ МЕХАНИЗМОВ ПРЕРЫВИСТОГО ДВИЖЕНИЯ

СИНТЕЗ МЕХАНИЗМОВ ПРЕРЫВИСТОГО ДВИЖЕНИЯ

898 СИНТЕЗ МЕХАНИЗМОВ ПРЕРЫВИСТОГО ДВИЖЕНИЯ [ГЛ. XXf

400 СИНТЕЗ МЕХАНИЗМОВ ПРЕРЫВИСТОГО ДВИЖЕНИЯ [ГЛ. ХХГ

402 СИНТЕЗ МЕХАНИЗМОВ ПРЕРЫВИСТОГО ДВИЖЕНИЯ [ГЛ. XXI




Рекомендуем ознакомиться:
Материала обозначение
Материала образуется
Магнитные сепараторы
Материала оказывают
Материала определяются
Материала осуществляется
Материала относительно
Материала пластинки
Материала подлежащего
Материала полученного
Материала повышается
Материала позволяет
Материала представляющего
Машинного производства
Материала принимается
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки