Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Металлическими материалами



Для силовых конструкций преимущественно используют композитные пластики (усиленные стекловолокном и стеклотканями). Из стекловолок-нитов изготовляют обтекатели корпуса легких судов, кузова автомобилей и' другие конструкции оболочкового типа. Прочность таких конструкций выдерживает сравнение с металлическими конструкциями. Недостаточную жесткость компенсируют увеличением толщин и сечений.

Применение заклепочных соединений в настоящее время резко сократилось в связи с развитием сварки. Область применения заклепочных соединений ограничивается металлическими конструкциями из легких сплавов, где еще не разработаны методы надежной сварки, и конструкциями, работающими на динамические нагрузки (мосты, корпуса самолетов и др.).

В то же время опыт эксплуатации стеклопластиков выявил и некоторые их недостатки, в частности недостаточную жесткость, недостаточную прочность при сдвиге и сжатии, сопротивление истиранию, ограниченный выбор методов соединения их с металлическими конструкциями и др.

Заметное и надежное улучшение конструкции транспортных самолетов в ближайшее время, являющееся результатом использования композиционных материалов, ставит под угрозу любую страну или компанию, которая, слишком долго проработав с металлическими конструкциями, позволит конкурентам выйти на рынки сбыта с продукцией высшего качества. Если это произойдет, аргумент в пользу обычного периода амортизации может стать недействительным. С учетом этого переход на новые материалы на основе постепенного замещения традиционных будет начат, вероятно, уже на моделях, находящихся в настоящее время в массовом производстве. Доказательства этого уже отмечались в разделе III, в котором сообщалось о проводимой оценке вспомогательных конструктивных элементов.

Вводы трубопроводов в здания, шахты (колодцы) и другие аналогичные сооружения должны выполняться так, чтобы надежно предотвращался случайный металлический контакт между трубами и проводками. Часто обнаруживаемые на надземных вентиляционных трубах случайные контакты с заземленными металлическими деталями можно сравнительно просто предотвратить, если все конструктивные элементы, предназначенные для крепления и упора, монтировать при помощи механически прочных изолирующих прокладок на вентиляционных трубах. Если в грунте нельзя избежать пересечения катодно защищаемых резервуаров-хранилищ и других сооружений, например кабелей, заземлений для молниеотводов и т. п., то необходимо предусмотреть достаточные расстояния и позаботиться о том, чтобы при уплотнении или последующем проседании грунта между этими сооружениями не возникло контакта. Все дополнительные устройства, получающие соединение с резервуарами-хранилищами, например устройства для предотвращения утечек, указатели уровня и т. п. должны быть смонтированы так, чтобы из-за них не возникали никакие соединения с кабелями подвода защитного тока, заземлителями, металлическими конструкциями и т. д., ограничивающие эффективность катодной защиты. По тем же причинам в тех случаях, когда подземные резервуары-хранилища должны быть предохранены от всплывания в грунтовых водах, бетонные плиты или фундаменты не должны иметь никаких контактов с самими резервуарами, а если предусматриваются натяжные ленты, то они должны быть снабжены механически прочными изолирующими подкладками достаточно большой площади.

Ходовые рельсовые нити не должны иметь соединения с металлическими конструкциями, оборудованием, трубопроводами и оболочками кабелей, путевым бетоном и щебеночным балластом, зазор должен быть не менее 30 мм.

Увеличить жесткость кольцевой рамы без утолщений оболочки у шлюза можно различными конструкционными приемами, выбор которых должен определяться технико-экономическими расчетами. Возможно увеличение сечения рамы посредством установки дополнительных фланцев. В зоне рамы обрамления шлюзов можно сконцентрировать также кольцевую арматуру. Если ее приведенная толщина вместе с толщиной рамы для шлюза диаметром 3 м содержит 15—20 см металла, то это будет примерно равноценно сплошному металлическому обрамлению шлюза с толщиной стенки рамы, равной '/20 ее диаметра. Рама может быть изготовлена пустотелой с заполнением свободного пространства бетоном или другим материалом, имеющим высокий модуль упругости (рис. 1.27, в). Можно усилить жесткость рамы установкой кольцевых каркасов, приваркой к ее фланцам дополнительных колец из листового металла и т. д. Пересеченную шлюзом рабочую арматуру можно компенсировать, увеличив сечение торцевых и промежуточных сланцев шлюза. Следует обеспечить надежное соединение ненапрягаемой арматуры оболочки с фланцами рамы. Эффекта можно добиться, обеспечив совместную работу защитной оболочки с металлическими конструкциями самого шлюза.

Следовательно, упругие свойства масляного слоя подшипника скольжения при малой толщине, равной 0,1 величины радиального зазора, выражаются нелинейной характеристикой жесткости, порядок величины приведенной жесткости (0,2 -=- 0,3)-106 кГ/см близок к величине жесткости металлоконструкции машины (зубчатого зацепления, опор и т. д.), демпфирующие свойства масляного слоя характеризуются величиной декремента колебаний 6 = 0,44, т. е. составляют сравнительно большую величину, что в значительной степени определяет слабые виброзащитные свойства масляного слоя как упругой связи. Поэтому в тех случаях, когда предъявляются повышенные требования по вибрациям корпуса механизма, имеющего внутренние источники высокочастотных (выше 500 гц) колебаний, рационально применять упругие вкладыши подшипников с одним рядом упругих элементов; для виброизоляции от источников среднечастотных (100—600 гц) колебаний лучше использовать двухрядные упругие вкладыши с металлическими конструкциями упругих элементов — пружин.

Для силовых конструкций преимущественно используют композитные пластики (усиленные стекловолокном и стеклотканями). Из стекловолок-нитов изготовляют обтекатели корпуса легких судов, кузова автомобилей и другие конструкции оболочкового типа. Прочность таких конструкций выдерживаег сравнение с металлическими конструкциями. Недостаточную жесткость компенсируют увеличением толщин и сечений.

Потери тепла на аккумуляцию его кладкой печи, металлическими конструкциями выдвижного пода, конвейерами, муфелями и пр.

Большой интерес представляет водонапорная башня В. Г. Шухова, выполненная в виде трубы гиперболоидной формы, что позволило при ее создании отказаться от трудоемких гнутых стальных элементов, очень сложных к тому же и в сборке. 72-метровое сооружение оказалось почти на 45 % дешевле по сравнению с другими металлическими конструкциями [14, с. 169—174; 23, с. 159—169]. В 1904 г. гиперболоид В. Г. Шухова был использован без указания его приоритета в смотровых башнях американского флота.

Тугоплавкие сплавы, в первую очередь тантал, оплав ниобия с танталом и в отдельных случаях молибден, являются самыми кислотостойкими металлическими материалами. Их применение особенно целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а также некоторые промышленные среды.

Основной особенностью железобетона как конструкционного материала являются пониженные по сравнению с металлическими материалами прочность и жесткость. Допустимые напряжения растяжения и сжатия у железобетона примерно в 3 раза меньше, чем у серых чугунов. Для создания конструкций, равнопрочных чугунным, необходимо увеличение сечений и моментов сопротивления, согласно которому сечения железобетонных конструкций должны быть больше сечений соответствующих чугунных конструкций не менее чем в 3 раза. Так как модуль упругости железобетона примерно в 3 раза ниже модуля упругости чугуна, то увеличение сечений в том же отношении доводит жесткость железобетонных конструкций при растяжении-сжатии до жесткости чугунных конструкций.

Основываясь на имеющихся к настоящему времени данных, можно предложить следующую формулировку: хладноломкость — это потеря пластичности металлическими материалами при низких температурах. Причины хладноломкости: возрастающая роль примесей вследствие понижения растворимости их при уменьшении температуры, концентрация напряжений около дефектов и, возможно, локальная концентрация деформации в разупрочненных тепловым эффектом деформирования участках.

Рио. 120. Потеря массы металлическими материалами в продуктах сгорания топ-> лива в .избытке кислорода с добавкой (а, в) и без добавки (б, г) этиловой жид« кости при 900 °С и длительности испытания 50 ч. Состав сплавов и их предвари» тельная обработка, % (мае.)!

, Очень близок методу вихревых токов термоэлектрический Иетод. Нагретый датчик, подведённый к поверхности покрытия, вызывает термоэлектрический ток между разными металлическими.-материалами. Этот ток можно измерить соответствующими приборами, откалиброванными по эталонам известной толщины, При попытках создания приборов с использованием Термоэлектрического метода определения толщины покрытия Оказалось, что на полученные данные влияют конструктивные Особенности датчика, температурные изменения испытуемых деталей и малейшие отклонения в составе металлов. По этим причинам достоверность результатов нельзя считать достаточной, и практическое применение этого типа прибора очень ограничено.

Повышенная циклическая вязкость чугуна, обусловленная наличием в его структуре включений графита, увеличивает по сравнению с другими конструкционными металлическими материалами чувствительность чугунных деталей в условиях циклических нагрузок к концентраторам напряжений [130, 260]. По этой же причине (наличие включений графита) чугун менее чувствителен, чем стали (особенно повышенной прочности) и к масштабному фактору, т. е. понижению усталостной прочности с повышением сечения испытательных образцов.

Основной- особенностью железобетона как конструкционного материала являются пониженные по сравнению с металлическими материалами прочность и жесткость. Допустимые напряжения растяжения и сжатия у железобетона примерно в 3 раза меньше, чем у серых чугунов. Для< создания конструкций, равнопрочных чугунным, необходимо увеличение сечений И моментов сопротивления, согласно которому сечения железобетонных конструкций должны быть больше сечений соответствующих чугунных конструкций не менее чем в 3 раза. Так как модуль упругости железобетона примерно в 3 раза ниже модуля упругости чугуна, то увеличение сечений в том же отношении доводит жесткость железобетонных конструкций при растяжении-сжатии до жесткости чугунных конструкций.

Слоистые пластики имеют сравнительно низкий модуль упругости при сжатии (примерно такой же, как при растяжении). Хотя слоистые пластики могут сравниться с металлическими материалами по своему пределу прочности при растяжении, они сильно уступают металлам по

Созданы методики и оборудование для усталостных испытаний высокомодульных материалов. Расчеты на прочность при переменных нагрузках как по коэффициентам запаса прочности, так и при помощи вероятностных методов расчета требуют знания характеристик сопротивления усталости материала. Для этого разработаны оборудование и методики проведения усталостных испытаний композитов при растяжении, изгибе, межслойном сдвиге и смятии в мало- и многоцикловой областях. Установлено, в частности, что современные углепластики обладают высоким сопротивлением усталости по сравнению с металлическими материалами, что позволяет эффективно применять их при значительных амплитудах переменных нагрузок. Были выявлены статистические закономерности подобия усталостного разрушения углепластиков и разработаны предпосылки создания инженерной методики оценки усталостной долговечности элементов конструкций из углепластиков.

Армировка деталей из пластмасс может быть произведена как металлами, так и не металлическими материалами (стеклом, фарфором и т. п.). Арматура предназначена для лучших условий крепле-

Кроме того, древесный пластик обладает еще и такими преимуществами не по сравнению с металлическими материалами, как:




Рекомендуем ознакомиться:
Материалов отличается
Материалов относительно
Материалов пластмассы
Материалов подвергнутых
Материалов получение
Материалов последние
Материалов позволяет
Магнитным управлением
Материалов представлены
Материалов применяют
Материалов приведены
Материалов приведено
Материалов производится
Материалов прозрачных
Материалов рассмотрим
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки