Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Металлоке рамических



В Лаборатории высокотемпературной металлографии Института машиноведения разработана методика применения телевизионных анализаторов изображения типа «Quantimet» и «РМС» для исследования особенностей пластической деформации и разрушения биметаллических материалов. Использование этой методики позволило с большой точностью производить подсчет числа полос скольжения, возникающих на поверхности образцов при их нагру-жепии, измерять длину возникшей усталостной трещины и площадь пластической деформации, развивающейся в ее вершине, а также исследовать процессы диффузии элементов через границу раздела слоев биметалла и производить измерение отпечатков ин-дентора при исследовании микротвердости [1]. Все указанные измерения проводились на образцах после их извлечения из рабочих камер испытательных установок.

Созданная в Лаборатории высокотемпературной металлографии Института машиноведения установка ИМАШ-22-71 обеспечивает возможность одновременного осуществления прямого наблюдения, фотографирования и киносъемки микроструктуры, записи петли гистерезиса, а также рентгеноструктурного анализа и записи изменения электросопротивления металлических образцов при их нагреве до 1200° С при статическом и циклическом нагружении. С целью расширения пределов нагружения рабочая вакуумная камера установки смонтирована на стандартной универсальной испытательной машине УМЗ-10т, что позволяет проводить испытания в широком диапазоне скоростей деформирования при статическом и малоцикловом знакопеременном растяжении — сжатии с заданной амплитудой нагрузки или деформации при автоматической записи петель гистерезиса.

В дальнейшем аппаратура для исследования микроструктуры в процессе деформации образцов, подвергаемых нагружению растягивающими усилиями, модернизировалась. В установках ИМАШ-5М и ИМАЩ-5С температура испытания была повышена до 1100—1200° С и существенно расширен интервал скоростей растяжения. Созданная в 1961—1965 гг. усовершенствованная установка ИМАШ-5С-65 явилась первым типом отечественной серийной аппаратуры для высокотемпературной металлографии. При творческом содружестве лаборатории высокотемпературной металлографии Института машиноведения и Фрунзенского завода контрольно-измерительных приборов (КИП), начиная с 1965 г. под руководством инж. Г. С. Мельни-кера налажено серийное производство установок для тепловой микроскопии.

В лаборатории высокотемпературной металлографии Института машиноведения в настоящее время на основе изучения отечественных и зарубежных исследований и опытно-конструкторских разработок в области тепловой микроскопии в содружестве с промышленностью создаются новые образцы аппаратуры, перспективной для серийного выпуска, а также проводятся изыскания с целью определения экспериментальных возможностей разрабатываемых методов и средств главным образом применительно к установлению общих соотношений между микроструктурным и макроскопическим аспектами процессов деформирования и разрушения металлических материалов в широком диапазоне температур [2—5].

Предварительную механическую обработку выполняют с помощью шлифовальной бумаги с уменьшающейся величиной зерна абразива. Последующая обработка, как показал опыт лаборатории высокотемпературной металлографии Института машиноведения, может быть эффективно осуществлена с применением эластичных дисков, армированных частицами синтетических алмазов различной крупности, а также с использованием соответствующих алмазных паст *.

Регистрация изменения электросопротивления образца в опытах при растяжении параллельно с микроструктурным анализом реализована на новой серийной установке ИМАШ-5С-69 «Киргизстан», разработанной на Фрунзенском заводе контрольно-измерительных приборов по техническому заданию лаборатории высокотемпературной металлографии Института машиноведения (на базе установки ИМАШ-5С-65).

Сконструированная в лаборатории высокотемпературной металлографии Института машиноведения в 1963 г. установка ИМАШ-18, модернизирован-

По техническому заданию лаборатории высокотемпературной металлографии Института машиноведения Фрунзенский завод контрольно-измерительных приборов осуществил разработку проектно-технической документации и в 1968 г. начал серийный выпуск установки ИМАШ-10-68, созданной на базе аппаратуры ИМАШ-ЮМ и имеющей близкие к ней характеристики [49, с. 25—32]. Эта установка предназначена для исследования микроструктуры образца с одновременной регистрацией изменения его электросопротивления в процессе испытания на усталость металлов и сплавов при знакопеременном изгибе в условиях нагрева.

Созданная в лаборатории высокотемпературной металлографии Института машиноведения установка ИМАШ-22-71 * обеспечивает возможность прямого наблюдения, фотографирования и киносъемки микроструктуры, а также рентгеноструктурного анализа и записи изменения электросопротивления металлических образцов при их нагружении и тепловом воздействии. Чтобы расширить пределы нагружения, рабочую камеру установки смонтировали на универсальной 10-т испытательной машине УМЭ-ЮТМ, что позволило проводить испытания в широком диапазоне скоростей деформирования при статическом и низкочастотном знакопостоянном и знакопеременном растяжении—сжатии, при изгибе с заданной амплитудой нагрузки или деформации при автоматической записи петель гистерезиса. На рис. 86 дана принципиальная схема установки. Она включает в себя

По описанной схеме в лаборатории высокотемпературной металлографии Института машиноведения был изготовлен микрокриостат для низкотемпературного металлографического исследования материалов. Этот микро-

Ниже приводятся некоторые результаты исследований, выполненных методами высокотемпературной металлографии в сочетании с другими физическими методами в лаборатории высокотемпературной металлографии Института машиноведения совместно с Институтом проблем материалове- 201

В лаборатории высокотемпературной металлографии Института машиноведения впервые были сделаны попытки применить анализаторы изображения для изучения деформационной структуры образцов металлических материалов после их испытания в установках для тепловой микроскопии. Разработанные при этом методики позволяют производить количественный анализ накопления усталостных повреждений (подсчет числа линий скольжения и их площади), изучение процессов зарождения и развития усталостной трещины (измерение длины трещины и площади пластической зоны в ее вершине), измерение величины диагонали и расстояния между отпечатками микротвердости [76].

Фторопласт отличается низким коэффициентом трения при работе без смазки (/;=* 0,04); из-за малой механической прочности его используют в виде облицовочной пленки или для заполнения пор металлоке-рамических втулок.

Различные изделия из металлокерами-ческих твердых сплавов (стандартные) 550 Различные фасонные изделия из метал-лскерамических твердых -сплавов

ВИДЫ МЕТАЛЛОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ

При приблизительно одинаковом составе металлокерамические материалы в ряде случаев (см. стр. 571) имеют более низкую длительную жаропрочность, а также жароупорность, чем плавленные. Однако термостойкость и вибростойкость у металлокерамических материалов выше. Кроме того, в металлоке-рамических материалах менее выражено вредное влияние ориентировки после механической деформации. Пластичные высокожаропрочные материалы, которые обладают достаточной термостойкостью в переплавленном состоянии, например молибден и его пластичные сплавы, лучше готовить методами вакуумного или дугового плавления.

Фторопласт отличается низким коэффициентом трения при работе без смазки (f^t 0,04); из-за малой механической прочности его используют в виде облицовочной пленки или для заполнения пор металлоке-рамических втулок.

В качестве исходного материала для изготовления металлоке-рамических фильтров используют бронзовую луженую дробь (ТУ 601—62) с частицами различной сферической формы диаметром до 0,3 мм (в зависимости от требуемой тонкости фильтрования). Химический состав бронзы: медь 90,5—92,5%, олово 7,5— 9,5%. Форма фильтров в виде цилиндрических стаканов (может быть и любая другая форма). Бронзовый порошок насыпают в пресс-форму и спекают. Спекание производится в пресс-формах, изготовленных из стали 1X13, качество обработки внутренних поверхностей — 9-й класс шероховатости.

Испытания на механическую прочность изготовленных таким образом металлокерамических фильтров производят под давлением рабочей жидкости при изоляции фильтрующих поверхностей хлорвиниловой пленкой, имитирующей полное засорение. Фильтры с толщиной стенки 2 мм разрушаются при таком испытании при давлении 3,3—3,5 кгс/см2.

Различные изделия из металлокерами-ческих твердых сплавов (стандартные) 550 Различные фасонные изделия из метал-лскерамических твердых -сплавов

ВИДЫ МЕТАЛЛОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ

При приблизительно одинаковом составе металлокерамические материалы в ряде случаев (см. стр. 571) имеют более низкую длительную жаропрочность, а также жароупорность, чем плавленные. Однако термостойкость и вибростойкость у металлокерамических материалов выше. Кроме того, в металлоке-рамических материалах менее выражено вредное влияние ориентировки после механической деформации. Пластичные высокожаропрочные материалы, которые обладают достаточной термостойкостью в переплавленном состоянии, например молибден и его пластичные сплавы, лучше готовить методами вакуумного или дугового плавления.

Порошок кобальтовый (ГОСТ 9721—61) изготовляют электролитическим способом. Предназначен-для производства металлоке-рамических изделий. Поставляют в металлических запаянных банках, при этих условиях гарантийный срок 4 мес., гранулометрический состав порошка — через сито № 0045 про-




Рекомендуем ознакомиться:
Материалов применяется
Материалов принимается
Магнитная гидродинамика
Материалов происходит
Материалов проводится
Материалов рассматриваются
Материалов различных
Материалов разработанных
Материалов результаты
Материалов соотношение
Материалов сопряженных
Материалов составляют
Материалов способность
Магнитная восприимчивость
Материалов существенное
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки