Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Многократное применение



Многократное повторение расчета позволяет найти распределение температуры в узловых точках в любой момент времени т = Л?Дт, где N — число повторений расчета.

Существует ряд схем и способов описания вариантов Е!за-имного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме размещения атомов (рис. 3). Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы); это так называемая кристаллографическая плоскость. Многократное повторение кристаллографических плоскостей, расположенных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (номов). Расстояния между центрами соседних атомов измеря-

Физическая модель изнашивания такая: при скольжении микронеровности перед ней возникает лобовой валик деформируемого материала, который находится под воздействием сжимающих напряжений (рис. 8.1, а). За микронеровностью вследствие сил трения материал растягивается. Следовательно, материал испытывает знакопеременное деформирование, многократное повторение которого приводит к накоплению в нем повреждений микроструктуры и отделению частиц материала. Эксперименты показывают, что материал разрушается не сразу, а лишь после некоторого числа циклов работы («ц).

При встрече этих дислокаций возникает новая, расположенная в плоскости (100): l/2a [111] + \12а [Ш] —»• а [001]. Многократное повторение этого взаимодействия приводит к слиянию новых дислокаций д[001], что, в конце концов, вызывает образование зародышевой трещины. Схема Коттрелла не требует наличия барьеров для дислокации в исходном состоянии. Барьеры, а затем дислокационные скопления и трещины образуются в результате пластической деформации. Иногда трещина образуется не у вершины скопления, а внутри него. Отрыв по плоскости скольжения происходит под действием нормальных напряжений. Они возникают в результате искривления плоскостей скольжения дислокациями, располагающимися в других плоскостях. Искривление поверхности скольжения при сдвиге вдоль нее вызывает появление нормальных напряжений. Эта схема, предложенная В. Л. Инденбомом, реализуется после значительной пластической деформации.

усталостные трещины. Под действием сил трения происходят пластические сдвиги поверхностных слоев материала и образовавшиеся усталостные трещины наклоняются и вытягиваются в направлении сил трения (см. рис. 1.1). Если вращение роликов происходит в условиях обильной смазки, то в трещины попадает масло, которое при прохождении зоны контакта выдавливается из трещин ведущего ролика 1 и заклинивается в трещинах ведомого ролика 2, расширяя и углубляя их. Многократное повторение этого процесса приводит к отделению с поверхностного слоя материала в форме чешуек (отслаивание) или отделению частиц, приводящему к образованию ямок (выкрашивание), прежде всего на рабочей поверхности ведомого ролика.

Физическая модель изнашивания такая: при скольжении микронеровности перед ней возникает лобовой валик деформируемого материала, который находится под воздействием сжимающих напряжений (рис. 8.1, а). За микронеровностью вследствие сил трения материал растягивается. Следовательно, материал испытывает знакопеременное деформирование, многократное повторение которого приводит к накоплению в нем повреждений микроструктуры и отделению частиц материала. Эксперименты показывают, что материал разрушается не сразу, а лишь после некоторого числа циклов работы (пц).

При встрече этих дислокаций возникает новая, расположенная в плоскости (100): \12а [111] + 1/2а [111] -» a [001]. Многократное повторение этого взаимодействия приводит к слиянию новых дислокаций а[001], что, в конце концов, вызывает образование зародышевой трещины. Схема Коттрелла не требует наличия барьеров для дислокации в исходном состоянии. Барьеры, а затем дислокационные скопления и трещины образуются в результате пластической деформации. Иногда трещина образуется не у вершины скопления, а внутри него. Отрыв по плоскости скольжения происходит под действием нормальных напряжений. Они возникают в результате искривления плоскостей скольжения дислокациями, располагающимися в других плоскостях. Искривление поверхности скольжения при сдвиге вдоль нее вызывает появление нормальных напряжений. Эта схема, предложенная В. Л. Инденбомом, реализуется после значительной пластической деформации.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — в-ва, молекулы к-рых (макромолекулы) состоят из десятков и сотен тыс. атомов. Часто В. с. наз. полимерами, т. к. осн. принцип строения макромолекул — многократное повторение одинаковых или разных элементарных звеньев. В. с.

Эксплуатационное воздействие на элемент конструкции реализуется при переменных параметрах цикла нагружения во времени. Порождаемый при таком нагружении поток энергии является нестационарным. Такой вид нагружения, согласно принципам синергетики об упорядоченности ступеней самоорганизации, позволяет осуществлять многократное повторение тех или иных механизмов эволюции, присущих данной системе. Применительно к распространению усталостных трещин это означает, что причины переходов от одних механизмов разрушения к другим могут быть следствием изменения величины управляющего параметра, однако в направлении роста трещины можно реализовать только те механизмы, которые характеризовали рост трещины при стационарном режиме нагружения. Эта ситуация имеет место, если переходные режимы внешнего воздействия вызвали дискретные изменения реак-

Многократное повторение соударений рабочих поверхностей приводит к образованию множества единичных лунок и формированию специфического макрорельефа на изнашиваемой поверхности, характерного отсутствием направленной шероховатости в виде рисок.

Многократное повторение циклов нагрузка — разгрузка (см. рис. 3, кривая 2) на различных образцах сопровождалось соответствующим ускорением и замедлением реакций, что свидетельствовало о механохимическом растворении, обусловленном механическим напряжением.

Сложение сил. Сложение двух сил по правилу параллелограмма позволяет найти вектор равнодействующей R и линию ее действия (рис. 19). Многократное применение этого приема дает возможность складывать три силы и более. Но удобнее пользоваться построением векторного многоугольника сил, замыкающая которого дает вектор равнодействующей R (рис. 20, б), а для определения линии действия R строить веревочный многоугольник (рис. 20, а) следующим образом: выбирают произвольно полюс О (рис. 20, б) и соединяют его с вершинами силового многоугольника лучами; через любую точку а на линии действия силы Р± (рис. 20, а) проводят ab \\ 0В, через полученную точку Ь — прямую Ьс


Рекомендуем ознакомиться:
Механического истирания
Механического нагружения
Механического полирования
Магнитного состояния
Механического сцепления
Механического взаимодействия
Механическому разрушению
Механическом нагружении
Механическом разрушении
Механизация автоматизация
Механизация вспомогательных
Механизации производства
Механизации технологического
Механизированные устройства
Магнитную сепарацию
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки