Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Максимальной теплоемкости



В настоящее время на всех опытных реакторных установках используется керамическое ядерное горючее в виде сферических микротопливных частиц с многослойным защитным покрытием с максимальной температурой 1300° С, диспергированных в графитовой матрице топливного слоя твэла. Применяются три формы твэлов: шаровая (реакторы AYR, THTR-300), стержневая (реакторы «Драгой», «Пич-Боттом») и призматическая (реактор HTGR-330), а также два способа перегрузки твэлов: непрерывный и периодический. В реакторах с шаровыми твэ-лами используется непрерывная замена выгоревших твэлов свежими без снижения мощности; в реакторах с цилиндрическими стержневыми и шестигранными призматическими твэ-лами — периодическая замена выгоревшего топлива на остановленном реакторе.

На основе исследований получены две эмпирические зависимости между необходимой относительной толщиной защитного покрытия и глубиной выгорания тяжелых ядер в топливе, с одной стороны, и максимальной температурой топлива — с другой. При этом определяется область конструкционных параметров микротвэлов и температур, где вероятность разрушения микротвэлов мала [6].

В качестве такого эталона предложен вариант бесканальной активной зоны с гомогенными шаровыми твэлами с объемной пористостью т = 0,4 (соотношение N^10) и диаметром твэла, обозначаемым dn. Сравнение следует проводить при одинаковом значении (Д7/ДТН)^ для всех исследуемых i вариантов по величине (Др/ДрнЬ тех же вариантов. Оптимальным будет вариант с минимальным значением Др/Дрн и максимальным относительным значением d/ds. Значения ДГН и Дрн варианта, принятого за эталон, следует определять по зависимостям (5.21), (5.23) и (5.29) для наиболее «горячей» точки активной зоны, характеризуемой максимальной температурой топлива при учете отклонений параметров от номинальных значений.

Образование окиси азота NO определяется максимальной температурой цикла, концентрациями азота и'кислорода в продуктах сгорания и не зависит от природы топлива. При максимальной температуре цикла в камере сгорания дизеля и бензинового двигателя порядка 1800 ... 2800 К из окислов азота образуется только NO. Под воздействием кислорода в составе отработавших газов в системе выпуска двигателя и далее в атмосфере NO окисляется в NO.,. Этот процесс в атмосфере протекает крайне медленно, за сутки до 50% по объему.

Наибольшее количество углеводородов образуется на режимах холостого хода и малых нагрузок, что объясняется низкой максимальной температурой цикла дизеля, когда имеет место повышенное недогорание топлива. Наибольшие концентрации СО наблюдаются в зоне высоких нагрузок при малых частотах вращения коленчатого вала.

г) красностойкостью (теплостойкостью, устойчивостью против отпуска), характеризующей способность стали сохранять высокие твердость, прочность и износоустойчивость при нагреве, возникающем во время работы; это одно из важнейших свойств, обусловливающих качество инструментальных сталей, характеризующееся максимальной температурой после четырехкратного нагрева, при которой сталь сохраняет твердость не ниже 60 HRC (рис. 14.1);

Распределение приращения температуры по поверхности массивного тела на расстоянии у, равном 1, 2, 3 см, представлено соответствующими кривыми на рис. 6.8, в. Температура точек при приближении источника теплоты резко возрастает, достигает максимума, а затем убывает. Снижение температуры происходит с меньшей скоростью, чем ее подъем. Максимум температуры в точках, находящихся не на оси Ох, достигается после прохождения источником теплоты плоскости, параллельной yOz, в которой находится рассматриваемая точка. В более удаленных от оси Ох точках максимальная температура достигается позже и имеет меньшее численное значение по сравнению с точками, расположенными ближе к оси Ох. Штриховой линией на рис. 6.8, а соединены точки с максимальной температурой на плоскости хОу. Поверхность раздела областей нагрева и остывания получается путем вращения штриховой кривой относительно оси Ох. Область впереди штриховой кривой нагревается, позади — остывает.

условий деформирования и могут определяться экспериментами при различных температурах, соответствующих сварочным. Указанные параметры упругости функционально связаны между собой так, что независимыми остаются два параметра из четырех. Известные экспериментальные данные показывают, что для целого ряда конструкционных материалов изменение коэффициента Пуассона при повышении температуры несущественно. Поэтому рекомендуется в расчетах сварочных деформаций и напряжений принимать коэффициент Пуассона v = const и равным значению его при нормальной температуре. Для экспериментального определения модуля сдвига проводят испытания на кручение тонкостенного трубчатого образца при постоянной температуре с постоянной скоростью деформирования. Подобные испытания проводят для ряда температур из диапазона сварочных с интервалом Л7П = 50...ЮО К, начиная с нормальной температуры Го. Диапазон сварочных температур для исследования деформаций и напряжений следует ограничить максимальной температурой 7"к,при которой предел текучести материала близок к нулю. Для алюминиевых сплавов значение температуры Тк находится в диапазоне 573...673 К, для низкоуглеродистых сталей Тк = = 873 К, для коррозионно-стойких сталей и титановых сплавов Гк= 1073...1173 К. Зная коэффициент Пуассона v, и модуль сдвига G,, можно подсчитать значения нормального модуля ?,- и объемного модуля /G при соответствующей температура Тс.

Чтобы составить себе представление о том, какие значения термических к. п. д. возможны в описанном цикле, возьмем наиболее широкие пределы температур, возможные для основных типов существующих двигателей. Для п а -ровых двигателей максимальной температурой при современном состоянии техники является та, при которой могут безопасно и длительно работать лопатки турбин и трубки перегревателей, примерно ^ — 650° С. Низшей температурой можно считать достижимую в конденсаторах турбин — около 25° С. Отсюда для наибольших перепадов температур в паровом двигателе термический к. п. д. цикла Карно составит:

Чаще всего выходную часть перегревателя при / ^ 540 °С выполняют по прямоточной, в крайнем случае, по смешанной схеме. При этом змеевики с максимальной температурой пара располагают в области умеренных температур продуктов сгорания.

Верхний предел температуры охлаждения tc для действительной установки значительно ниже, чем для идеальной. Этот предел определяется не равенством температур 7С=7В, как для идеальных установок, а той максимальной температурой конденсации и абсорбции, при

При таких значениях Д/вэ переходную зону (максимальной теплоемкости) удается вынести за пределы НРЧ.

При таких значениях Д/в,, переходную зону (максимальной теплоемкости) удается вынести за пределы НРЧ.

2.3.3. Тепло- и массообмен в воде закритических параметров. Потенциальные преимущества воды закритических параметров. при использовании ее в качестве теплоносителя в ядерных реакторах хорошо известны, и это служит стимулом для поиска путей ее применения. Теплоотдача к воде закритических параметров имеет много общего с аналогичными процессами при кипении, поскольку в обоих случаях свойства теплоносителя, и в; первую очередь теплоемкость, претерпевают резкое изменение в узком интервале температур. Характер теплоотдачи при закритических параметрах иллюстрирует рис. 2.9 [19]. Изменение-коэффициента теплоотдачи в «псевдокритической» области (т. е. в зоне максимальной теплоемкости) является значительным. Для описания теплоотдачи в этой области авторы использовали уравнение для однофазной среды в условиях принудительной: циркуляции, но ввели в него две поправки: модифицированную теплоемкость и отношение плотностей pWps. Рекомендованное ими уравнение

В экспериментальных исследованиях изобарной теплоемкости в диапазоне температур газа 160—300 °С получены большие значения максимальной теплоемкости (CD ~

Нет и среда по-прежнему остается однофазной, эта область условно названа нами зоной квазифазовых превращений. В этой области (рис. 1-8) изменяются и закономерности зависимости энтальпии среды оттемпературы, что объясняется наибольшим значением теплоемкости среды в этой области. В связи с этим теплотехники предпочитают называть ее зоной максимальной теплоемкости.

пара мальной теплоемкости (от 300 до 360 »С) не максимальной теплоемкости (от 360 до 420 °С) зоны максимальной теплоемкости (от 420 до 480 °С)

Найденное уравнение оказалось возможным распространить также и на область пара до -плотностей его не менее 0,05 кг/л (50 кг/ж3). При значениях плотности пара 'более 0,05 кг/л растворимость Si02 в нем должна описываться несколько иным уравнением, что может быть связано как с некоторым уменьшением координационного числа, так и изменением теплоты растворения. В целом же приведенное уравнение при .подстановке тех или иных значений температуры и плотности дает возможность количественной оценки поведения мономерной кремнекислоты в тракте блока сверхкритических параметров. По уравнению (6-11) построена номограмма (рис. 6-5). Расчетное определение растворимости кремниевой кислоты в зависимости от температуры для давления 300 кгс/см2, выполненное с использованием этой номограммы, представлено на рис. 6-6. Как видно, растворимость кремнекислоты в паре сверхкритического давления весьма значительна даже для своего минимального значения. Резкое изменение растворимости характерно для зоны максимальной теплоемкости, в которой резко изменяется плотность растворителя. После достижения своего минимального значения растворимость кремниевой кислоты вновь повышается с ростом температуры.

ние их показывает, что обработка данных относительно энтальпии, а не температуры имеет определенные преимущества. Зависимость растворимости от температуры дает очень резкий спад в зоне максимальной теплоемкости. Этот спад сильно растягивается по длине трубы, так как весьма малым изменениям температуры в данной области отвечают большие изменения энтальпии из-за высоких значений теплоемкости. Поэтому такая зависимость при равномерном по длине трубы обогреве эквивалентна изменению растворимости по длине трубы. Из рис. 6-11 наглядно видна отличительная характеристика зависимости растворимости окислов железа от па-, раметров среды в сравнении с зависимостью растворимости всех остальных соединений водной среды блока сверхкритических параметров. Только для окислов же леза растворимость их монотонно убывает с ростом температуры, становясь минимальной для выходных условий котлоагрегата. При этом зависимость от давления сказывается в наименьшей степени в сравнении с другими соединениями. Поэтому железоокисные отложения не будут образовываться в тракте блока сверхкритических параметров в том случае, если после конденсатоочистки содержание окислов железа будет равно их растворимости, отвечающей выходным параметрам, за вычетом приращения окислов железа за счет коррозии тракта от конденсатоочистки до выхода из котлоагрегата. В связи с отрицательной температурной зависимостью эта величина существенно меньше растворимости окислов железа в конденсате при его параметрах после конденсатоочистки.

Свойства рабочей среды изменяются вдоль пароводяного тракта. В парогенераторах докритического давления выделяются участки с однофазной средой (пар или вода) и двухфазной средой (пароводяная смесь). Парогенераторы на сверхкритическое давление можно разделить на участки с практически несжимаемой рабочей средой (на входе в тракт), участки с существенно переменными свойствами (зона максимальной теплоемкости), участки со сравнительно малым изменением физических свойств и малой сжимаемостью при значительном изменении температуры по длине (последние ступени конвективного пароперегревателя или участки тракта вторичного пара).

Вместе с тем результаты статических и динамических расчетов показывают, что полную модель с переменными по длине коэффициентами целесообразно применять только для расчета специфических участков типа зоны максимальной теплоемкости. В области фазового перехода происходит резкое изменение свойств рабочей среды, сильно проявляется связь между процессами изменения температуры и давления. Для большинства других участков изменение свойств рабочей среды от входа до выхода и перепады давления невелики. Такие участки достаточно полно описываются уравнениями с постоянными по длине коэффициентами, для которых можно найти более эффективный способ решения. Следует отметить, что оценивать упрощения модели не удается, если ограничиться рамками отдельно взятого теплообменника. Критерием допустимой погрешности является расхождение динамических характеристик, которое получается при моделировании парогенератора в целом.

Сматриваемых значений затруднено вследствие наруЩе"1 ЕИЯ монотонности этой зависимости в зоне (максимальной теплоемкости. Однако между энтальпией среды и коэффициентом Ь имеется четкая функциональная связь, выражаемая следующим уравнением:




Рекомендуем ознакомиться:
Меняющихся параметров
Меридиональная составляющая
Максимальных растягивающих
Мерительного инструмента
Мероприятий способствующих
Мероприятия обеспечивающие
Мероприятия позволили
Месторождения природного
Металлическая платформа
Металлические герметичные
Металлические конструкции
Металлические порошковые
Металлические сооружения
Максимальных значениях
Металлических композитов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки