Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Мартенситно стареющих



В последнее время разработаны стали интерметаллидного упрочнения (так называемые мартенситно-стареющие стали — американское название Марэджинг), в которых при закалке получается практически безуглеродистый мартенсит, а затем при отпуске (примерно при 500°С) происходит выделение интерметаллидных фаз. При этом ав—180 кгс/см2, оо,2= = 150 кгс/мм2, 6 = 12%, оз = 40%, а„ = 6-МО кгс-м/см2.

Обычно эти мартенситно-стареющие стали содержат 18% Ni и дополнительно легированы титаном и алюминием и часто кобальтом и молибденом. Имеются варианты состава с меньшим (до 8—10%) и большим (до 25%) содержанием никеля.

Определенной спецификой отличаются превращения в зоне неполной перекристаллизации в мартенситно-стареющих сталях. Современные мартенситно-стареющие стали имеют следующие системы легирования: Н18К9, Х15Н5 и Х12Н10.Стали содержат углерод (0,03...0,08%), а также Ti, Al, Mo, Mb, Си и другие элементы. Последние обусловливают упрочнение в процессе старения. Стали применяются в состоянии закалки и старения с исходной структурой низкоуглеродистого мартенсита, упрочненного высокодисперсными интерметаллидными фазами типа NiaTj Fe2Mo и др. В зоне неполной перекристаллизации происходит так называемое обратное (а->- v) -превращение, при котором часть мартенсита без распада на ферритно-перлитную смесь превращается в аустенит. Превращение имеет сдвиговый характер, подобно мартенситному превращению, почему оно и было названо обратным. Обратное превращение сопровождается коагуляцией интерметаллидов и частичным их растворением в аусте-

Мартенситно-стареющие опали

Мартенситно-стареющие стали - это высокопрочные стали с незначительным содержанием углерода. Упрочнение их достигается использованием элементов, заменяющих углерод: никеля, кобальта и молибдена. Эти элементы обусловливают дисперсионное твердение мартенситной железо-никелевой матрицы при старении, отсюда и название сталей. Такие стали можно применять в станкостроении, самолетостроении, космической технике. Они идут на изготовление корпусов ракетных двигателей, деталей шасси самолетов, штампованных узлов и крепежных деталей [27].

Мартенситно-стареющие: 18 Ni (200) ....... 18 Ni (300) . . .

Универсальность применения нового способа упрочнения обеспечивается интенсивно разрабатываемыми мартенситно стареющими сталями, получившими за рубежом название марейджинг. Их упрочнение до значений порядка 200 кГ/мм2 и выше достигается путем старения при относительно невысокой температуре стали, находящейся в высокопластичном состоянии. Такая обработка высокотехнологична: отпадают коробление и остаточные напряжения, свойственные объемной закалке; становится возможным получить сложнейшие оболочечные конструкции с большими перепадами жестко-стей, практически не ограниченные размером, поскольку отпадает необходимость в высокотемпературных печах и закалочных баках. Одним словом, мартенситно стареющие стали делают подлинную революцию в технологии, резко снижая ее трудоемкость.

9. МАРТЕНСИТНО-СТАРЕЮЩИЕ ВЫСОКОПРОЧНЫЕ СТАЛИ

Высокая конструктивная прочность изделия достигается только тогда, когда оно изготовлено из материала, обладающего большой прочностью и высоким сопротивлением хрупкому разрушению. Этим требованиям в значительной степени отвечают безуглеродистые «;0,03 % С) мартенситно-стареющие стали (углерод и азот — вредные примеси, снижающие пластичность и вязкость стали), упрочняемые закалкой и последующим старением.

Мартенситно-стареющие стали представляют собой сплавы железа с никелем (8—20 %), а часто и с кобальтом. Для протекания процесса старения в мартенсите сплавы дополнительно легируют Ti, Al, Mo и др. Высокая прочность мартенситно-старею-щих сталей обязана образованию твердого раствора железа и легирующих элементов (Ni, Co, Mo, A1 и др.), мартенситному превращению, сопровождающемуся фазовым наклепом и главным образом старению мартенсита, когда происходит образование сегрегации, метастабильных и стабильных фаз типа Fe3Mo, Ni3Mo, NigTi, NiAl (Fe, Co)2Mo и др. Высокое сопротивление хрупкому

Сталь закаливают на воздухе от 820—850 °С. Нагрев до более высоких температур ведет к росту зерна и снижению пластичности. После закалки сталь состоит из безуглеродистого массивного (реечного) мартенсита, имеющего наряду с низкой прочностью хорошие пластичность и вязкость: ав = 1100-=-1200 МПа; со,2 = 950ч-1100 iMIla; б = 184-20 %; i) = 70-4-80 % и KCU = = 2,0—2,5 МДж/м2. Таким образом, характерной особенностью безуглеродистого мартенсита являются высокие пластичность и вязкость. В закаленном состоянии мартенситно-стареющие стали сравнительно легко обрабатываются давлением, резанием и хорошо свариваются. Стали обладают хорошей прокаливаемостью, и при закалке деформации изделий незначительны.

Состав некоторых мартенситно-стареющих сталей приведен в табл. 36. 394

Таблица 36 Состав и механические свойства мартенситно-стареющих сталей

При нагреве после завершения аустенитизации в металле ОШЗ внутри зерен развивается процесс гомогенизации по углероду и другим элементам. Перераспределение элементов происходит в соответствии со значениями градиента химического потенциала в разных участках зерен. При этом вначале возможно временное усиление МХН. Углерод перераспределяется из зон, обогащенных некарбидообразующими элементами, в зоны, обогащенные карби-дообразующими, поскольку первые повышают, а вторые понижают термодинамическую активность углерода. При повышении содержания углерода его активность увеличивается, в результате направление перераспределения углерода изменяется, чему также способствует произошедшее к этому моменту перераспределение других элементов. При нагреве до температур свыше 1370... 1470 К развивается процесс гомогенизации в направлении равномерного распределения элементов по телу зерен. Гомогенизация продолжается также на ветви охлаждения до температур сохранения диффузионной подвижности элементов или температур начала фазовых выделений, например, карбидов в высоколегированных мартенситно-стареющих сталях.

Определенной спецификой отличаются превращения в зоне неполной перекристаллизации в мартенситно-стареющих сталях. Современные мартенситно-стареющие стали имеют следующие системы легирования: Н18К9, Х15Н5 и Х12Н10.Стали содержат углерод (0,03...0,08%), а также Ti, Al, Mo, Mb, Си и другие элементы. Последние обусловливают упрочнение в процессе старения. Стали применяются в состоянии закалки и старения с исходной структурой низкоуглеродистого мартенсита, упрочненного высокодисперсными интерметаллидными фазами типа NiaTj Fe2Mo и др. В зоне неполной перекристаллизации происходит так называемое обратное (а->- v) -превращение, при котором часть мартенсита без распада на ферритно-перлитную смесь превращается в аустенит. Превращение имеет сдвиговый характер, подобно мартенситному превращению, почему оно и было названо обратным. Обратное превращение сопровождается коагуляцией интерметаллидов и частичным их растворением в аусте-

При охлаждении в области высоких температур в шве и в ЗТВ, находящихся в аустенитном состоянии, продолжают развиваться ряд процессов, начавшихся на этапе нагрева: гомогенизация, рост зерна и др. Некоторые процессы изменяют свое направление. Так, по мере охлаждения усиливается сегрегация примесей на границах зерен, а у мартенситно-стареющих сталей при условии медленного охлаждения возможно выпадение карбо-нитридов и карбидов хрома при температурах ниже 1320... 1220 К. Основной процесс в сталях при охлаждении, окончательно определяющий микроструктуру и свойства металла сварных соединений, — превращение аустенита.

Экспериментальные исследования проводили на сварных соединениях из алюминиевых сплавов и мартенситно-стареющих сталей. В качестве мягких прослоек выступали сварные швы, выполненные присадочной проволокой с более низкими, чем у основного металла прочностными характеристиками. В качестве основного металла и метала шва использована мартенситностареющая сталь ЭП-678 иЭП-659Ви, а также сплав АМгб. Величину радиусов в вершине непровэров задавали по состоянию торцевых поверхностей, плотно прилегающих при сварке друг к другу. Согласно ГОСТ 2789-75 состояние поверхности оценивается классом шероховатости — параметром R, (где R, — высота неровностей профиля стыкуемой поверхности по десяти точкам). При стыковке поверхностей выступы могут накладываться на выступы и т. д. Поэтому параметр вершины непровара 5 = 2р с достаточной точностью можно принять равным 2RZ . Данное положение было проверено экспериментально с использованием универсальных инструментальных микроскопов и методом голографической интерферометрии с применением оптических квантовых генераторов. В результате замеров было получено, что в той партии

Экспериментальные исследования проводили на сварных соединениях из алюминиевых сплавов и мартенситно-стареющих сталей. В качестве мягких прослоек выступали сварные швы, выполненные присадочной проволокой с более низкими, чем у основного металла прочностными характеристиками. В качестве основного металла и метала шва использована мартенситностареющая сталь ЭП-678 иЭП-659Ви, а также сплав АМгб. Величину радиусов в вершине непроваров задавали по состоянию торцевых поверхностей, плотно прилегающих при сварке друг к другу. Согласно ГОСТ 2789-75 состояние поверхности оценивается классом шероховатости — параметром Rz (где Rz — высота неровностей профиля стыкуемой поверхности по десяти точкам). При стыковке поверхностей выступы могут накладываться на выступы и т. д. Поэтому параметр вершины непровара 5 = 2р с достаточной точностью можно принять равным 2RZ. Данное положение было проверено экспериментально с использованием универсальных инструментальных микроскопов и методом голографической интерферометрии с применением оптических квантовых генераторов. В результате замеров было получено, что в той партии

Исследовано влияние повторной перегрузки до области малых упругопластических деформаций как у высококачественных сталей с сорбитной структурой, так и у мартенситно стареющих [1], как у латуни (2], так и у сплавов алюминия. Отмечается неблагоприятное воздействие повторной перегрузки на высококачественные стали при усталостном нагружении .с переменной по времени амплитудой [3] и при случайном нагружении [4].

жается при увеличении прочности как экспериментальных, так и промышленных сталей. При прочности на уровне мартенситно-стареющих сталей серии 200 сплав системы Fe—12Ni—0,5А1, упрочненный медью, имеет вязкость разрушения в два раза выше. Более того, при вязкости разрушения на уровне нержавеющей стали AISI 304 новый сплав имеет прочность в два раза выше.

Влияние титана неоднозначно и зависит, по-видимому, от конкретной микроструктуры сплава. В мартенситно-стареющих сталях титан входит в состав интерметаллида NisTi. В этих сталях, поведение которых при закалке отличается от поведения большинства других сталей, рассматриваемых в данном разделе, титан усиливает водородное охрупчивание [27, 28], даже если принять во внимание вероятное изменение предела текучести с повышением его содержания. В то же время в прочих ферритных и мартенсит-ных сталях при широких изменениях концентрации титана, уровня прочности и микроструктуры наблюдалось, как правило, существенное повышение стойкости в средах, содержащих как Н2, так и HgS [10, 19, 20, 28, 29]. Положительное влияние титана при этом объясняли его способностью ограничивать количество остаточного аустенита, что снижает и опасность последующего образования мартенсита [28, 30]. Однако, как показывают недавние результаты, главная роль титана, если он присутствует в виде примеси замещения или в форме мелкодисперсного равномерно распределенного карбида, заключается в том, что он действует как преимуществен-

В лаборатории «International Nickel Company» было исследовано коррозионное поведение мартенситно-стареющих сталей 18№ (180) и 18Ni (200) в морской воде [151]. Скорости общей коррозии были примерно вдвое ниже, чем для сталей 4340 и HY-80. Значения параметра Кисе в морской воде для сталей 18№ (180) и 18№ (200) были равны 4480 и 3240 МПа мм1'2 соответственно.




Рекомендуем ознакомиться:
Методологии системного
Метрологические показатели
Метрологической надежности
Мезоскопическом масштабном
Мгновенной деформации
Мгновенное распределение
Мгновенного нагружения
Мгновенного разрушения
Микрофона усилителя
Микрогеометрии поверхности
Максимальная энергетическая
Микронеровностей поверхности
Микрорельефа поверхности
Микроскопическое исследование
Микроструктуры поверхности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки