Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Механизма взаимодействия



Для большинства механизмов деформации деталей нежелательны, так как они могут внести погрешности в работу механизма вследствие появления зазоров, увеличения трения и изменения передаточных отношений передач. Наряду с этим в механизмах широко применяют упругие детали, деформации которых полезны. Такие детали называют упругими элементами.

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. При относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на котором установлен машинный агрегат, испытывает циклически изменяющиеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.

1) Рассмотренные случаи, когда жесткость связи, через которую действует внешняя сила, либо гораздо меньше, либо гораздо больше жесткости стержня, позволяют считать заданными соответственно либо внешнюю силу, либо движение конца стержня. Если же жесткость связи и жесткость стержня сравнимы между собой и задачу нельзя отнести ни к тому, ни к другому из рассмотренных предельных случаев, то не могут быть заданы ни сила, действующая на стержень, ни движение конца стержня. В этом случае приходится рассматривать взаимодействие стержня и приводящего его в колебание механизма, вследствие чего задача очень усложняется. Для того чтобы осуществить случай заданного движения конца жесткого сплошного стержня, потребовался бы очень жесткий механизм, приводящий в движение конец стержня. Но о помощью камертона на струне случай заданного движения легко может быть реализован (рис. 442).

Вследствие упругости звеньев кулачкового механизма действительное движение толкателя отличается от предписанного или проектируемого закона движения, определяемого профилем кулачка. Для получения удовлетворительных динамических результатов необходимо, чтобы первые четыре производные по времени s(t) были бы равны нулю в начале и в конце движения и непрерывны в течение движения.

€ пвмощыо кланов скоростей и ускорений определять значения линейных и угловых скоростей и ускорений звеньев можно только для данного положения механизма. Вследствие внесения ошибок при графическом построении планов, особенно при определении ускорений, указанный метод обладает малой точностью.

Все перечисленные силы распределены (как правило, неравномерно) по объему или по поверхности звена. Так как перемещение всякого элемента звена механизма вследствие упругой деформации этого звена на много порядков меньше его перемещения, обусловленного кинематикой механизма, то при исследовании динамики механизма можно считать его звенья абсолютно твердыми телами. Поэтому движение не изменится, если заменить распределенные массовые и поверхностные силы их равнодействующими. После такой замены сила тяжести звена будет приложена в центре его масс, а сила поверхностного давления — в центре давления, лежащем внутри контура, ограничивающего поверхность, подверженную давлению. Так как в отличие от поля тяготения поле сил инерции неоднородно, то положение точки приложения равнодействующей распределенных по массе тела элементарных сил инерции все время изменяется в процессе движения. Поэтому распределенные силы инерции удобнее представить главным вектором сил инерции, приложенным в центре масс, и главным моментом сил инерции.

ствующей пружиной с регулируемой силой. Кулачки выполняют трапецеидального профиля небольшой высоты с углом наклона рабочих граней 45...60° (рис. 25.19). При перегрузке сумма осевых составляющих сил Fa на гранях кулачков становится больше прижимной силы пружины и муфта многократно прощелкивает кулачками, подавая звуковой сигнал о перегрузке. Повторные мгновенно-ударные включения кулачков при перегрузке отрицательно влияют на сопротивление усталости деталей механизма, вследствие чего эти муфты применяют для передачи небольших моментов при малых угловых скоростях. Кулачковые предохранительные муфты надежны в работе, но имеют повышенный износ кулачков. Размеры муфт подбирают по стандарту или принимают конструктивно. Кулачки проверяют на износостойкость аналогично сцепным кулачковым муфтам, пружины рассчитывают методами сопротивления материалов.

Теплообразование (фиг. 355) происходит в течение периода времени tT (периода скольжения трущихся поверхностей тормоза до остановки механизма). Вследствие ограниченности поверхностей

(кривая б—в) и шкива (кривая б—г) в период т3 протекают по разным законам. Период т3 соответствует времени работы механизма с включенным двигателем. Затем торможение повторяется, колодки замыкаются, и снова начинается нагрев трущихся поверхностей до температуры /4 (точка д). Разница в температурах к концу охлаждения вследствие малого зазора между шкивом и накладкой, а также из-за относительно небольшой величины периода включения двигателя в крановых механизмах невелика. Поэтому может быть принят общий закон охлаждения, выраженный кривой а—е. В следующий период торможения разница температур точек виг уменьшается, и к концу торможения температуры накладки и поверхности тормозного шкива (под колодкой) будут одинаковыми и равными 4- Следует считать, что соприкасающиеся поверхности вращающегося шкива и колодки в каждый момент времени имеют одинаковую температуру. Равенство температуры обеспечивается возможностью быстрого термического обмена при близком соприкосновении обеих поверхностей. Такой обмен уничтожает тенденцию к аккумулированию тепла. Различная теплопроводность материалов шкива и фрикционной накладки не вызывает разности температур поверхностей, но вызывает разницу в тепловых потоках: большая часть тепла идет на нагрев шкива, меньшая —через 600

Кривошип /, вращающийся вокруг неподвижной оси А, входит во вращательную пару В с шатуном 2, который входит во вращательную пару С с рычагом 3, профиль которого очерчен по дуге окружности радиуса г. Рычаг 3 перекатывается по неподвижному рычагу 4, профиль которого очерчен по дуге окружности радиуса R=2r, и входит по вращательную пару D со звеном 5, скользящим в неподвижных направляющих р—р. Пружина б осуществляет силовое замыкание механизма. Вследствие выбранных форм и размеров профилей рычагов 3 и 4 точка D, лежащая на окружности радиуса г, всегда движется прямолинейно вдоль оси q — q, проходящей через центр этой окружности, т. е. качением окружности радиуса г по окружности радиуса R осуществляется так называемое движение кругов Кардана. Возвратно-поступательное движение звена 5 осуществляется перекатыванием рычага 3 по неподвижному рычагу 4.

5. Допустимый предельный угол подъема направляющей кривой профиля неподвижного копира равен 35°. При дальнейшем увеличении угла подъема профиля возникает опасность поломки механизма вследствие сильно возрастающей реакции на копирный ролик.

Изменение состояния поверхностных слоев металла проявляется в виде пластической деформации и механического упрочнения, хемосорбции и диффузии из смазочной среды и образования вторичных структур. На эти процессы большое влияние оказывают поверхностно-активные вещества, раскрытию механизма взаимодействия которых с материалом поверхности посвящена специальная литература 126; 166].

43. Бурштейн Р. Х., Шурмовская Н. А., Корначева Г. М. Исследование механизма взаимодействия агрессивных газов с металлами методом контактной разности потенциалов//Тр. III Международного конгресса по коррозии металлов.— М.: Мир, 1968.. Т. 4. С. 22—29.

При смешивании ингибиторов может наблюдаться повышение или понижение суммарного эффекта. Очень редко суммарная активность равна сумме парциальных активностей. Независимо от механизма взаимодействия ингибиторов при смешивании их влияние на коррозию в кислотах самое различное. Поэтому рекомендуется перед смешиванием ингибиторов проводить предварительную экспериментальную проверку.

С целью выяснения механизма взаимодействия ингибитора с пленкообразующим были исследованы инфракрасные спектры поглощения пленками чистой олифы и олифы, модифицированной хроматом гуанидина (рис. 9.3). Было установлено, что интенсивность полос поглощения хромат-ионов (800—900 см"1) после отверждения пленок и особенно после их термо- и свето-старения снижается. Это свидетельствует об уменьшении содержания в пленке шестивалентного хрома вследствие образования комплексных соединений с карбоксильными и оксидными группами масляной пленки. Полосы поглощения в области частот 1600 и 3100 см"1 характерны для различных колебаний МН2-группы. После отверждения пленок и их старения наблюдается заметное уменьшение интенсивности и для этих полос, но при этом появляется полоса поглощения с максимумом при частоте 1580 скг1 и увеличивается поглощение при частоте

Коррозионное растрескивание в хлоре и газообразной НС1 не было достаточно исследовано для подтверждения каких-либо выводов относительно механизма взаимодействия и процессов, контролирующих скорость. В работе [139] отмечена аналогия между КР в НС1 и высокотемпературным солевым растрескиванием. Наблюдение за растрескиванием титана под напряжением в атмосфере водорода показывает, что водород может выступать в качестве опасного компонента. Поскольку изучение этого явления находится еще на стадии исследования, мало известно о кинетике и характере растрескивания.

Коррозия металлов и сплавов представляет собой процесс их самопроизвольного разрушения в окружающей среде. В зависимости от механизма взаимодействия металла со средой коррозию условно подразделяют на химическую и электрохимическую.

ИССЛЕДОВАНИЕ МЕХАНИЗМА ВЗАИМОДЕЙСТВИЯ ПРИСАДОК К МАСЛАМ С МЕТАЛЛАМИ

М. М. Кусаков, Г. В. Виноградов, Э. А. Разумовская, П. И. С а н и н, А. В. У л ь я н о в а. Исследование механизма взаимодействия присадок к маслам с металлами.................. 67

Еще слабее проявляются специфические особенности механизма взаимодействия углерода со стеклом, т. е. механический унос частиц углерода, их поверхностное (гетерогенное) горение при турбулентном режиме течения в пограничном слое. Это, вероятно, связано с относительно высоким уровнем теплоотдачи в турбулентном слое при сохранении почти того же уровня сдвигающихся напряжений в пленке расплава, что и в ламинарном пограничном слое. При этом доля испарения в уносе массы быстро увеличивается. В этом случае отличия в эффек-

[24] Асламбеков В. А. Прецизионная весовая техника исследования кинетики и механизма взаимодействия металлов с газами. — В кн.: Механизм. . . М., изд-во «Наука», 1964.

Наконец, опыты показали, что (если в газе не образуется электрический разряд) приложение высокого напряжения заметно не изменяет теплообмен. Как было упомянуто выше, Велкофф [4, 5] не исследовал изменения теплоотдачи вблизи точки пробоя. Экстраполяция предложенного им механизма взаимодействия ионов с потоком газа приводит к заключению, что при увеличении уровня электрической мощности должно происходить еще большее повышение теплоотдачи. Однако на самом деле на этом уровне наблюдается ослабление интенсификации теплообмена (фиг. 4). и, таким образом, на основании предложенного Велкоффом механизма взаимодействия нельзя полностью объяснить наблюдаемое явление.




Рекомендуем ознакомиться:
Материалы значительно
Материалах применяемых
Материалам относятся
Магнитные электромагнитные
Материала армированного
Материала диаметром
Материала характеристики
Материала химический
Материала использование
Материала исследования
Материала коэффициенты
Материала контролируемого
Материала начинается
Материала напряжения
Магнитные превращения
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки