Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Неподвижной плоскостью



Главный вектор />и сил инерции подвижных звеньев механизма будет равен нулю только тогда, когда вектор полного ускорения as центра масс этих звеньев будет равен нулю. Это условие выполняется, если общий центр масс S подвижных звеньев механизма находится в одной и той же точке, неподвижной относительно стойки. При частичном уравновешивании вектора Р„ он может иметь заданное направление или модуль.

Для многих целей Земля является довольно хорошим приближением к инерциальной системе отсчета. Причиной ускорения лаборатории, неподвижной относительно Земли, является суточное вращение Земли вокруг ее оси. Это вращение создает небольшое ускорение лабораторной системы отсчета, которым можно пренебречь не во всех случаях. Точка, покоящаяся на

Ньютон образно сформулировал этот вопрос и свой ответ на него. Представим себе ведро с водой. Если мы будем вращать ведро вокруг вертикальной оси, неподвижной относительно звезд, то поверхность воды примет параболическую форму; с этим все согласятся. Предположим, однако, что вместо вращения ведра мы каким-то образом привели звезды во вращение вокруг ведра, так что относительное движение осталось одно и то же. Ньютон считал, что если бы мы вращали звезды, то поверхность воды осталась бы плоской. Согласно этой точке зрения, существует абсолютное вращение и абсолютное ускорение. Из опыта мы не знаем, можно ли полностью описать и сопоставить с результатами локальных измерений в лаборатории все явления, происходящие с вращающимся ведром воды, никак не относя их к звездам.

Пример Центробежная сила и центростремительное ускорение в равномерно вращающейся системе отсчета. Хотя ниже мы подробно разберем вращающиеся системы отсчета, целесообразно уже сейчас обсудить один простой и распространенный пример. Рассмотрим материальную точку Р, покоящуюся относительно неинерциальнои системы отсчета, так что в этой системе ее ускорение а = 0, Сама же неинерциальная система отсчета равномерно вращается вокруг оси, неподвижной относительно инерциальной системы отсчета. Как было показано в гл. 2, ускорение данной точки относительно инерциальной системы отсчета равно

Почему происходит вращение плоскости качаний маятника? Если бы опыт Фуко производился на Северном полюсе Земли, то мы могли бы сразу увидеть, что эта плоскость остается неподвижной относительно инерциальной системы отсчета, а Земля под маятником вращается, совершая один оборот за каждые 24 ч. Если смотреть сверху (скажем, с Полярной звезды) на Северный полюс, то вращение Земли совершается против часовой стрелки, так что наблюдателю на Земле, забравшемуся на лестницу у Северного полюса, казалось бы, что относительно него плоскость движения маятника вращается по часовой стрелке.

е) Каковы начальное и конечное значения суммарной кинетической энергии в системе отсчета, неподвижной относительно лаборатории, и в системе-отсчета, неподвижной относительно центра масс? Является ли удар упругим или неупругим при указанных значениях YI, v2, wi, w2?

в) Каков их конечный импульс в системе отсчета, неподвижной относительно центра масс?

Ради простоты мы приняли величину ю постоянной. Для материальной точки, неподвижной относительно вращающейся системы отсчета (ха = ys = гв =• == 0), уравнения (66) принимают следующий вид:

Заметим, что для материальной точки, неподвижной относительно вра« -щающейся системы отсчета, уравнения (69) приводятся с помощью соотношений (65) к следующему виду:

Истинное ускорение тела относительно инерциальной системы отсчета (ускорение свободного падения) имеет величину g и направление — хв> т. е. оно направлено противоположно начальному положению оси хя вращающейся системы отсчета, неподвижной относительно Земли. Сила тяжести, действующая на тело, не имеет составляющей в направлении ув. Поэтому если взять проекции обеих частей уравнения (72) на направление у в, то получится следующее соотношение:

Рис. 10.34. Чему равно время Д/(ай'а'), за которое свет проходит от а к V и возвращается в а'? В инерциальной системе отсчета S, неподвижной относительно эфира, интерферометр имеет скорость V, направленную вправо; свет имеет скорость с.

скольжения (см. рис. 1.139), то в каждый данный момент времени мгновенный центр скоростей плоского сечения колеса, перпендикулярного его оси О, лежит в точке соприкосновения колеса с неподвижной плоскостью.

где а — угол, который образует плоскость регулятора с неподвижной плоскостью ху в начальный момент времени. Скорости точек Mj и MI и муфты А соответственно определяются соотношениями

Плоское движение твердого тела. Это такое движение, при котором каждая точка твердого тела движется в плоскости, параллельной некоторой неподвижной (в данной системе отсчета) плоскости. При этом плоская фигура Ф, образованная сечением тела этой неподвижной плоскостью Р (рис. 1.9), в процессе движения все время остается в этой плоскости, например цилиндр, катящийся по плоскости без скольжения (но конус в подобном случае совершает уже более сложное движение).

В основе механизмов лежит кривошипно-ползунный механизм ABC, к которому присоединена двухповодковая группа, состоящая из двух ползунов 5 и б с шарниром Е между ними. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 и 4. Вычерчивающая точка находится в центре шарнира Е. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Сн, т. е. для случая, когда звено 4 неподвижно. Для вычерчивания подвижной центроиды С,, шарниры В к С скрепляются с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены соответствующим выбором длин звеньев / и 2, что достигается перемещением шарниров В и С в прорезях F и G звеньев / и 2.

В основе механизма лежит кулисный механизм с двумя качающимися вокруг осей А и В ползунами, состоящий из звеньев /, 2, 3 и 4, к которому присоединен крестообразный ползун 5. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 к 4. Вычерчивающая точка Е находится в центре крестообразного ползуна 5. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Сн. Для вычерчивания подвижной центроиды Сп звено 2 скрепляется с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены изменением расстояния между шарнирами А и В, что достигается перемещением шарнира А в прорези F звена 4,

В основе механизма лежит кулисный механизм эллипсографа, состоящий из звеньев 1, 2, 3 и 4, к которому присоединен крестообразный ползун 5. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 и 4. Вычерчивающая точка Е находится в центре крестообразного ползуна 5. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Сн. Для вычерчивания подвижной центроиды Сп звено 2 скрепляется с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены изменением расстояния между шарнирами А и В, что достигается перемещением шарнира В в прорези F звена 2.

В основе механизма лежит тан-генсный механизм, состоящий из звеньев 1, 2, 3 и 4, к которому присоединена двухповодковая группа, состоящая из ползунов 5 к 6 с шарниром Е между ними. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 и 4. Вычерчивающая точка находится в центре шарнира Е. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Сн. Для вычерчивания подвижной центроиды Сп ползун 2 скрепляется с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены соответствующим выбором положения шарнира Л в прорези F звена 4.

В основе механизма лежит кулисный механизм ABC с качающейся вокруг неподвижной оси С кулисой 3, к которой присоединена двухповодковая группа, состоящая из двух ползунов 5 к 6 с шарниром Е между ними. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 и 4. Вычерчивающая точка находится в центре шарнира Е. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Си, т. е. для случая, когда звено 4 неподвижно. Для вычерчивания подвижной центроиды С„ ползун 2 скрепляется с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены соответствующим выбором длин звеньев 1 к 4, что достигается перемещением шарниров В и С в прорезях F и G звеньев 1 к 4,

В основе механизма лежит кулисный механизм ABC с качающимся вокруг неподвижной оси С ползуном 3, к которому присоединена двухпо-водковая группа, состоящая из двух ползунов 5 и б с шарниром Е между ними. Механизм предназначается для вычерчивания подвижных и неподвижных центроид звеньев 2 и 4. Вычерчивающая точка находится в центре шарнира Е. На чертеже показана настройка механизма для вычерчивания неподвижной центроиды Сн. Для вычерчивания подвижной центроиды С„ кулиса 2 скрепляется с неподвижной плоскостью, а звено 4 освобождается. Различные очертания центроид могут быть получены соответствующим выбором длин звеньев / и 4, что достигается перемещением шарниров В и С в прорезях F и С звеньев 1 и 4,

При вращении контролируемого изделия а между неподвижной плоскостью и измерительным штоком / при наличии овальности измерительный шток / вызывает перемещение рычага 2, качающегося вокруг неподвижной оси А. На конце этого рычага имеется призматическая канавка, к граням которой с помощью плоской пружины 3 прижимается цилиндрический контактный штифт 4. На корпусе измерителя укреплены два микрометрических винта Ь, с помощью которых производится настройка измерителя на заданное поле допуска. Если овальность изделия а выше допускаемой, то при движении рычага 2 контактный штифт 4 наталкивается на тот или иной микрометрический винт и останавливается. При этом замыкается электрическая цепь и подается сигнал о браке.

кромки внутреннего резца неподвижной плоскостью X в начальной и конечной стадиях обкатки; отрезки S1U1 и S2U2 являются соответствующими следами вспомогательной кромки прорезного резца.




Рекомендуем ознакомиться:
Некоторые химические
Некоторые изменения
Называется отрицательной
Некоторые конструктивные
Некоторые механические
Некоторые недостатки
Некоторые неудобства
Некоторые определенные
Некоторые пояснения
Некоторые постоянные
Некоторые предприятия
Некоторые прикладные
Некоторые промежутки
Называется погрешностью
Некоторые соображения
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки