Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Неустойчивых состояний



12. С. Н. Кожевников. Динамика неустановившихся процессов. Труды МАИ, т. IX, № 1. М., Оборонгиз, 1939.

При рассмотрении переходных и неустановившихся процессов в рабочих машинах, приводимых в движение электродвигателями, имеет место взаимное влияние машины, рассматриваемой как системы масс с упругими связями, двигателя и системы управления. Электрическая система должна быть представлена как определенное сочетание электрических контуров, состоящих из сопротивлений, индуктивностей и емкостей. Переходные процессы в механической и электрических системах связаны друг с другом.

2. Слитковоз с канатным приводом (фиг. 1, а), управляемый по системе генератор—двигатель (Г — Д), при анализе неустановившихся процессов может быть представлен расчетной схемой (рис. 1,6), полученной в результате таких допущений: 1) жесткость звеньев лебедки, соединяющих электродвигатель с барабаном, велика по сравнению с жесткостью канатов, поэтому все вращающиеся массы можно заменить одной приведенной к барабану массой; 2) влияние профиля пути на движение слитковоза незначительно, поэтому можно считать слитковоз перемещающимся по горизонтальному пути; 3) жесткость канатов в процессе неустановившегося движения принимается переменной в зависимости от положения слитковоза и усилия в канате.

В сборнике представлены работы, посвященные широкому кругу проблем динамики механизмов и агрегатов, применяемых в конструкциях современных машин. Исследуются вопросы динамики неустановившихся процессов в машинных агрегатах, динамика механизмов с неголономными связями, вопросы устойчивости движения машин, их уравновешивания, оптимизации их параметров.

Для получения более полных характеристик переходных и неустановившихся процессов, возникающих при разгоне и торможении системы с учетом упругости жидкости и трубопроводов, уточнения предложенного закона изменения проходного сечения встроенного гидротормоза, назначения оптимальной последовательности работы и характеристик управляющей и регулирующей аппаратуры, выбора оптимальных характеристик и разработки методов расчета систем такого типа выполнены теоретические исследования, в которых расчетная схема гидропривода (рис. 3) принята в виде четырехмассовой системы с упругими связями одностороннего действия. Масса 0 представляет собой суммарную массу вращающихся частей насосного агрегата, масса т2 — приведенную к поршню массу связанных с ним деталей и части жидкости гидросистемы, массы т1 и mz — эквиваленты распределенной массы жидкости в трубопроводах гидросистемы. Упругие связи гидросистемы обусловлены податливостью жидкости и трубопроводов. Система находится под действием концевых усилий электродвигателя Рд, подпорного клапана Ра и приложенных в промежуточных сечениях упругих связей сил сопротивления ДРь величины которых зависят от расходов жидкости через соответствующие сечения гидросистемы. В сечениях 7 и 8 прикладываются силы сопротивления, возникающие при протекании жидкости через проходные сечения электрогидравлического распределителя. После подачи команды на перемещение золотника распределителя площади указанных проходных сечений изменяются во времени от нулевой до максимальной. В сечениях 3 и 6 прикладываются силы сопротивления, возникающие при протекании жидкости через автономные дроссели, проходное сечение которых изменяется от максимального до минимального, обеспечивающего ползучую скорость поршня в конце хода и обратно, в зависимости от пути поршня на участке торможения и разгона.

В соответствии с принятой расчетной схемой и составленным математическим описанием проведены теоретические исследования на ВМ. Типичная осциллограмма, полученная для условий, близких к имевшимся при экспериментальном исследовании, представлена на рис. 2. Сопоставление теоретической и экспериментальной осциллограмм показывает, что принятая расчетная схема и составленное математическое описание достаточно полно отражают основные динамические свойства исследуемой системы и позволяют переносить результаты теоретического исследования на реальные системы. Проведенные теоретические исследования позволили получить более полные характеристики переходных и неустановившихся процессов, возникающих при разгоне и торможении системы, с учетом упругости жидкости и трубопроводов, выбраны рациональная последовательность работы и характеристики управляющей и регулирующей аппаратуры. Результаты исследований показали, что при наилучших параметрах тормозного режима клапана величина тормозного давления составляет 362 и 365 кгс/см2, сила удара клапана о седло 6,7 и 5 т соответственно при закрывании и открывании клапана, имеют место отскоки клапана от конечных положений с последующими его ударами о седло или упоры, а в напорной магистрали во время торможения возникают динамические перегрузки. Теоретические исследования режима торможения клапана встроенным гидротормозом, закон изменения проходного сечения которого в функции перемещения поршня уточнен по результатам предварительных теоретических исследований, показали, что такой тормозной режим обеспечивает плавный подход и точную остановку клапана в конечном положении, причем давления в гидросистеме при торможении не превосходят номинальных.

Рассматривается расчетная схема (рис. 1), включающая электродвигатель постоянного тока с независимым или параллельным возбуждением Д, передачу 77, преобразующую вращательное движение якоря в поступательное, и призматический стержень С, масса которого равномерно распределена по его длине. В работах [1, 2] содержится описание неустановившихся процессов, возникающих в подобных агрегатах при возмущении со стороны электропривода. Настоящая работа содержит описание процесса, вызываемого возмущающим воздействием на неприводной конец стержня. Решение такой задачи представляет очевидный при-

Неподвижные элементы гидромашин (входные и выходные патрубки, переводные каналы, направляющие аппараты), являясь деталями сложной конфигурации, в которых скорость меняется по величине и направлению, работают в условиях неустойчивого отрыва потока. Обычно эта неустойчивость проявляется в пульсации давления и в общем неустановившемся характере течения. Интенсивность неустановившихся процессов зависит от количества очагов неустойчивого отрыва потока. Случайные флуктуации турбулентности, наличие неоднородного профиля скоростей в характерных сечениях элементов гидромашин приводят к возникновению широкополосного гидродинамического шума. Отрывные явления в потоке, колебания в системе, вызванные либо автоколебательными процессами, либо вращающимся срывом потока, являются причиной гидроупругих колебаний роторов и неподвижных элементов гидромашин.

В теории неустановившихся процессов асинхронных двигателей предложен ряд преобразований систем координат, существенно упрощающих уравнения потокосцеплений и электромагнитных

Для анализа неустановившихся процессов пуска, реверса и установившихся процессов переменного нагружения целесообразно принимать о>? = со„, обозначив эту систему координат х, у, О [103]. Система координат х, у, О вращается с синхронной скоростью со о относительно статора асинхронного электродвигателя и является неподвижной относительно его магнитного поля.

Неподвижные элементы гидромашин (входные и выходные патрубки, переводные каналы, направляющие аппараты), являясь деталями сложной конфигурации, в которых скорость меняется по величине и направлению, работают в условиях неустойчивого отрыва потока. Обычно эта неустойчивость проявляется в пульсации давления и в общем неустановившемся характере течения. Интенсивность неустановившихся процессов зависит от количества очагов неустойчивого отрыва потока. Случайные флуктуации турбулентности, наличие неоднородного профиля скоростей в характерных сечениях элементов гидромашин приводят к возникновению широкополосного гидродинамического шума. Отрывные явления в потоке, колебания в системе, вызванные либо автоколебательными процессами, либо вращающимся срывом потока, являются причиной гидроупругих колебаний роторов и неподвижных элементов гидромашин.

Рассмотрим плоскость ?р. На этой плоскости кривая q = 0 определяет область неустойчивых состояний равновесия (седел). При q > 0 линия р — 0 отделяет устойчивые состояния равновесия от неустойчивых. Граница между фокусами и узлами определяется уравнением 6 = 0, т. е.

Пусть 0"'°, .... Г?'1 —устойчивые состояния равновесия и периодические движения, О?'", ..., Г^'" —неустойчивые и Of1*1, .... Г?*'й —седловые. Окружим каждое из них малыми окрестностями с кусочно-гладкими граничными поверхностями, составленными либо из поверхностей без контакта, либо кусков интегральных поверхностей. Возможные виды таких поверхностей в трехмерном случае изображены на рис. 7.26,а, б, в. Обозначим границы этих окрестностей для устойчивых и неустойчивых состояний равновесия и периодических движений соответственно через GI", ...,а и alt ..., от. У седлового состояния равновесия

Мы рассмотрели фазовые траектории, расположенные вне выделенных окрестностей, и обнаружили, что их поведение описывается конечным числом гладких точечных отображений. Рассмотрим теперь фазовые траектории, расположенные внутри этих выделенных окрестностей. В окрестностях устойчивых состояний равновесия или периодических движений все фазовые траектории асимптотически приближаются к соответствующему состоянию равновесия или периодическому движению. Внутри окрестностей неустойчивых состояний равновесия или периодических движений все фазовые траектории выходят из этих окрестностей. В окрестностях седловых состояний равновесия или периодических движений все траектории, кроме траекторий, принадлежащих интегральным многообразиям, проходящим через состояние равновесия или периодическое

после конечного числа преобразований (на более Аг) перейдут в точки каких-то поверхностей сг/. Эти потоки фазовых траекторий от неустойчивых состояний равновесия и периодических движений к устойчивым разделяются в соответствии с описанной схемой и представляющим ее графом сепаратрисными интегральными многообразиями седловых состояний равновесия и периодических движений

Теорема 7.2. Исследование фазовых траекторий динамической системы, о которой шла речь в теореме 7.1, сводится к рассмотрению кусочно-гладкого точечного отображения поверхностей без контакта а,- неустойчивых состояний равновесия и периодических движений в поверхности без контакта а/" устойчивых состояний равновесия и периодических движений (рис. 7.28).

В неустойчивом состоянии равновесия трещина начинает двигаться но достижении нагрузкой критического значения, определяемого из критерия разрушения. В закритической области трещина может распространяться при постоянной нагрузке. Область неустойчивых состояний равновесия характеризуется неравенствами

В-третьих, параметрический резонанс имеет место не только при некоторых дискретных значениях критических частот, но охватывает целую область неустойчивых состояний в окрестности этих частот.

Некоторые общие соображения, связанные с устранением параметрического резонанса. Нарушение условий динамической устойчивости для рассмотренной выше модели возможно не только при со = 2fe0, но и при со = ®# = 2fe0/z, где i — целое число. Кроме того, следует иметь в виду, что около этих критических значений располагается целая область неустойчивых состояний си-

Значительная часть деталей современных машин повреждается вследствие напряжений, возникающих при колебаниях, возбуждаемых различными периодическими или внезапно приложенными силами, действующими самостоятельно или в сочетании с другими факторами (статическими и температурными). В некоторых случаях колебания сами по себе могут являться причиной разрушения, особенно при возникновении резонансных или других неустойчивых состояний. Поэтому большое значение приобрело теоретическое и экспериментальное изучение колебаний машин. В настоящее время вопросы, связанные с колебаниями, составляют довольно обширный раздел прикладной механики.

Значительная доля повреждений частей современных машин происходит вследствие напряжений, возникающих , при их колебаниях, возбуждаемых различными периодическими или внезапно приложенными силами, действующими как самостоятельно, так и в сочетании с другими факторами (статическими и температурными). В некоторых случаях вибрационная нагрузка сама по себе может послужить причиной разрушения, особенно при возникновении резонансных или других неустойчивых состояний.

взаимного расположения устойчивых и неустойчивых состояний сохранится и для любой другой убывающей характеристики М. Так, например, точка С, будет оставаться устойчивой во вгех случаях, когда касательная к характеристике М в этой точке будет проходить в пределах заштрихованного квадранта. Если считать, что характеристики М в процессе регулирования Двигателя остаются параллельными себе, тсгда на ветвях ВТ и RД расположатся устойчивые точки, на ветви TR— неустойчивые (пунктирная линия).




Рекомендуем ознакомиться:
Необходимость тщательного
Необходимость выполнения
Необходимость уменьшения
Необходимость значительного
Необходимости допускается
Необходимости используют
Необходимости обеспечения
Необходимости определения
Называются подобными
Необходимости пользоваться
Необходимости применять
Необходимости производить
Необходимости рассматривать
Необходимости сокращения
Необходимости выполнить
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки