Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Наложении электрического



Примером катодной защиты может служить покрытие, получаемое погружением стального листа в расплав цинка (горячее цинкование) (см. разд. 13.3.3). Этот метод впервые запатентован во Франции в 1836 г. и в Англии в 1837 г. [4]. Однако имеются упоминания, что во Франции цинковые покрытия наносили на сталь еще в Д742 г. [5]. Наложение электрического тока впервые было применено для защиты подземных сооружений в Англии и США в 1910—19)2 гг. [4]. С тех пор использование катодной защиты в этой области быстро распространялось, и в настоящее время этим методом эффективно защищают от коррозии тысячи километров подземных трубопроводов и кабелей. Катодную за-

Из того факта, что электрическое сопротивление металла без примесных атомов и дефектов при абсолютном нуле температуры равно нулю, следует, что сопротивление возникает в результате взаимодействия электрона, его столкновениями с тепловыми колебаниями решетки. Наложение электрического поля ускоряет движение коллективизированных электронов. Температурная зависимость электрической проводимости определяется изменением величины длины свободного пробега электрона /. Температурная зависимость длины свободного пробега / обусловлена взаимодействием движущихся под действием внешнего электрического поля электронов с ионным остовом решетки. Движение электронов можно описать как распространение волны. При движении в периодическом потенциальном поле металлического кристалла электромагнитные волны испытывают рассеяния на ионах решетки. Рассеянные волны интерферируют, образуя фронт волны. Непрерывное наложение двух процессов - рассеяния и интерференции — обеспечивает распространение электронной волны в кристалле, т.е. электрический ток. Согласно теории электропроводности для абсолютно чистого металла с идеально периодической (не искаженной) решеткой / —> °о при абсолютном нуле температуры, т. е. при абсолютном нуле электронная волна распространяется в идеально периодическом кристалле беспрепятственно, при этом сопротивление металла равно нулю. Важным результатом теории является то, что электросопротивление обусловлено рассеянием электронов на нарушениях периодичности (статических и динамических искажениях) решетки.

Из того факта, что электрическое сопротивление металла без примесных атомов и дефектов при абсолютном нуле температуры равно нулю, следует, что сопротивление возникает в результате взаимодействия электрона, его столкновениями с тепловыми колебаниями решетки. Наложение электрического поля ускоряет движение коллективизированных электронов. Температурная зависимость электрической проводимости определяется изменением величины длины свободного пробега электрона /. Температурная зависимость длины свободного пробега / обусловлена взаимодействием движущихся под действием внешнего электрического поля электронов с ионным остовом решетки. Движение электронов можно описать как распространение волны. При движении в периодическом потенциальном поле металлического кристалла электромагнитные волны испытьгеают рассеяния на ионах решетки. Рассеянные волны интерферируют, образуя фронт волны. Непрерывное наложение двух процессов - рассеяния и интерференции - обеспечивает распространение электронной волны в кристалле, т.е. электрический ток. Согласно теории электропроводности для абсолютно чистого металла с идеально периодической (не искаженной) решеткой / —> QO при абсолютном нуле температуры, т. е. при абсолютном нуле электронная волна распространяется в идеально периодическом кристалле беспрепятственно, при этом сопротивление металла равно нулю. Важным результатом теории является то, что электросопротивление обусловлено рассеянием электронов на нарушениях периодичности (статических и динамических искажениях) решетки.

При волочении со скоростью 27 м/мин медной проволоки диаметром 0,06 мм через алмазную волоку наложение электрического тока плотностью несколько тысяч ампер на квадратный миллиметр в зоне деформации снижает усилие волочения на 10—15% в случае применения постоянного тока и на 20—25% при импульсном токе [21].

6. Электромеханическое точение', наложение электрического тока низкого напряжения и большой плотности на систему резец—изделие приводит к интенсивному выделению тепла в зоне их контакта, что изменяет условия резания, повышая производительность либо чистоту обработанной поверхности.

ции относятся аэрирование, наложение электрического и маг-

конструкция которого предложена А. Б. Даван-ковым с сотр.- (рис. 88) [358]. Наложение электрического поля на слой ионообменной смолы вызывает повышение ее емкости; представляется возможным электрохимически десорбировать ценные компоненты — золото, серебро и т. д., получая их в виде порошка или твердых продуктов на катоде.

К физическим методам интенсификации процесса коагуляции относятся аэрирование, наложение электрического и магнитного полей, воздействие ультразвуком, ионизирующее излучение. Введение сжатого диспергированного воздуха в обрабатываемую воду в смеситель после добавления коагулянта с некоторым разрывом во времени позволяет удалить из зоны коагуляции образующийся при распаде угольной/кислоты диоксид углерода. Своевременное удаление свободной углекислоты из сферы формирования микрохлопьев значительно ускоряет дальнейший ход коагуляции. Аэрирование в количестве 10... ...30% от расхода обрабатываемой воды позволяет снизить расход коагулянта на 25 ... 30% и улучшить качество обработ-,ки воды.

Дипольная (ориентационная) поляризация имеет место в веществах с молекулами, обладающими постоянным ди-польным моментом даже в отсутствие электрического поля (полярные молекулы) (рис. 2.2). Наложение электрического поля вызывает частичное ориентирование диполей, что является причиной поляризации. Поворот диполей в направление поля требует преодоления некоторого сопротивления, поэтому дипольная поляризация связана с потерями энергии на выделение тепла. Процесс установления поляризации этого вида имеет апериодический характер по времени, и, по аналогии с подобными свойствами напряжений и деформаций в механике, его называют релаксацией. Время релаксации определяется как постоянная апериодического процесса, т.е. продолжительность изменения поляризации в е раз после внезапного увеличения

хонинговальные и суперфинишные. В последнее время для улучшения и повышения производительности процессов хонингования и суперфиниширования применяют наложение электрического тока или ультразвука. Ультразвуковое суперфиниширование абразивными и алмазными брусками получило широкое распространение в производстве подшипников качения.

щепления (рис. 8.4). Величину Д?в находят по расстоянию между линиями дублета. Наложение электрического квадрупольного и магнитного дипольного взаимодействий меняет относительное расположение шестерки линий СТС (рис. 8.5).

При наложении электрического поля возникают силы, заставляющие электроны дрейфовать — двигаться вдоль поля; на хаотическое тепловое движение накладывается упорядоченное движение со скоростью дрейфа. Пользуясь законами классической физики, можно оценить ее порядок по сравнению с тепловой скоростью.

Пусть имеются однородные скрещенные поля (E_LB), изображенные на рис. 129. Общий характер движения может быть выяснен с помощью чисто качественных соображений без решения уравнений. Будем для определенности считать заряд частицы положительным (е>0). В отсутствие электрического поля в постоянном магнитном поле частица движется по окружности с постоянной скоростью v (рис. 129, а). При наложении электрического поля, перпендикулярного магнитному, скорость частицы становится переменной. При смещении в направ-

Из-за несовершенств кристаллической решетки в полупроводниках при наложении электрического поля возникает движение носителей зарядов, и, следовательно, они могут выполнять роль электронных устройств.

Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях.

Композиционные электрохимические покрытия (КЭП) получают из суспензий, представляющих собой электролиты с добавкой определенного количества высокодисперсного порошка, или из эмульсий, образующихся при введении в электролиты гидрофобных жидкостей, а также из пенообразных сред. При наложении электрического тока или в отсутствие его (бестоковое осаждение) на поверхности покрываемого изделия осаждается металл (первая фаза, или матрица) и частицы порошка (вторая фаза), которые цементируются матрицей.

Отмечается [16, 117], что металлические изделия упрочняются внедрением в них дисперсных частиц, в частности монокристаллов, металлических игл и волокон, при наложении электрического или магнитного поля.

1 Электрофорез — направленное движение дисперсных частиц в растворе, возникающее при наложении электрического поля.

Вопрос интенсификации процесса горения важен для различных отраслей техники. Решить его можно путем подогрева топлива и окислителя, увеличением содержания кислорода в воздухе, переходом с ламинарного режима горения на турбулентный, предварительным перемешиванием горючего и окислителя. Перспективным способом следует считать метод воздействия электрического поля на пламя. Еще в 1910 г. Томсон высказал предположение о том, что образующиеся в пламени ионы и электроны должны влиять на процесс распространения пламени. Первым, кто оценил практическую значимость эффектов, наблюдаемых в пламенах при наложении электрического поля, был Бранд [1]. В дальнейшем были проведены многочисленные исследования влияния электрического поля на процесс горения. Изучались условия воспламенения, стабилизации горения, изменения формы пламени в электрическом поле и др.

Так как скорость движения нейтральных частиц при наложении электрического поля возрастает, то соответственно возрастают коэффициенты диффузии и теплопроводности. Без поля

Так как все величины, входящие в уравнение (8), кроме теплопроводности, при наложении электрического поля остаются без изменения, то соотношение скоростей распространения пламени при наложении электрического поля и без поля можно представить в виде

В уравнении величины ^и и т есть функции от напряженности электрического поля. Для расчета изменения скорости распространения пламени при наложении электрического поля предположили, что (хи = 1 -ь 2 см2 /в -сек и t = L/u0 ~ 0,8 сек (где L — длина участка распространения пламени, расположенного в электрическом поле) и не зависят от напряженности электрического поля. Результаты расчета представлены на графике (рис. 1).




Рекомендуем ознакомиться:
Наибольшее возрастание
Наибольшего габаритного
Наибольшего поперечного
Найденным значением
Наибольшем количестве
Наибольший изгибающий
Наибольший расчетный
Начальной энтальпии
Наибольшие касательные
Наибольшие перемещения
Наибольшие трудности
Наибольших деформаций
Наибольших нормальных
Наибольшими напряжениями
Наибольшим коэффициентом
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки