Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Напряжений возникающей



В действительности, для большинства реальных материалов в малой области конца разреза, вследствие больших напряжений, возникает область проявления нелиней-

Концентрация напряжений может быть вызвана не только формой детали, но и действием сопряженных деталей. В качестве примера на рис. 173 приведено полученное из опыта распределение напряжений в теле стяжного болта. Напряжение, обусловленное формой болта, имеет наибольшую величину на участке перехода стержня в головку и в 3 раза превышает среднее напряжение а0 в стержне. Максимальный скачок напряжений возникает в плоскости расположения торца гайки (сттах = 5сг0).

С повышением внутренних механических напряжений возникает восприимчивость металла к сероводородному растрескиванию.

Смещение кромок чаще возникает в соединениях деталей, отличающихся по структуре производства, например, в соединениях «обечайка-днище». Концентрация напряжений возникает и в соединении двух элементов разной толщины (рис. 1.1). Смещение серединных поверхностей двух элементов разной толщины приводит к дополнительной концентрации из-за появления изгибающего момента (рис. 1.2). Указан-

В действительности для большинства реальных материалов в малой области конца разреза из-за больших напряжений возникает зона проявления нелинейных свойств материала, в которой распределения напряжений и смещений отличаются от упругого. В схеме квазихрупкого разрушения (Орован, Ирвин) принимается, что зона нелинейных эффектов мала по сравнению с длиной трещины. Это позволяет считать, что и размер данной зоны, и интенсивность пластических деформаций в ней целиком контролируются коэффициентом интенсивности напряжений, пределом текучести и коэффициентом упрочнения, а поле напряжений вокруг пластической области описывается асимптотическими формулами.

Поломка зубьев. Чаще всего поломки зубьев возникают в результате усталости материала: вследствие многократного периодического повторения нагрузки при зацеплении зубьев у основания зуба в месте максимальной концентрации напряжений возникает усталостная трещина, приводящая к поломке (рис. 3.64, а). Поломка может произойти также от действия нагрузки, значительно превышающей допустимую но статической прочности материала зубьев.

Примечание. Наибольшая концентрация напряжений возникает у края напрессованной детали.

Накопление деформаций при том или ином виде нагружения зависит от степени жесткости нагружения. При жестком цикле нагружения накопление регистрируемых пластических деформаций ограничено самими условиями проведения испытаний. Различные виды нагружения определяют и отличающиеся типы разрушений, возникающие при знакопеременном упругопластическом деформировании. При мягком нагружении с высоким уровнем напряжений возникает квазистатическое разрушение, близкое по характеру к статическому. При жестком нагружении независимо от уровня амплитуды, деформаций разрушение начинается с образования поверхностных трещин при последующем их подрастании до критической длины. В реальных условиях накопление деформаций и изменение напряжений могут занимать промежуточное положение между мягким и жестким видами нагружении, а разрушение может носить смешанный характер. Анализ условий эксплуатации и случаев разрушения различных конструкций показывает, что основной причиной, вызывающей возникновение трещины, является циклическое изменение напряже-

Переход на вторую стадию разрушения в мезотуннелях приводит к регулярному упругому раскрытию вершины трещины в каждом цикле приложения нагрузки, что сопровождается каскадом событий, связанных с формированием усталостных бороздок от дислокационных (единичных) трещин в полуцикле разгрузки материала в результате ротаций объемов материала в пределах зоны пластической деформации. Разрушение перемычек при этом может происходить путем сдвига и путем ротаций объемов материала. На начальной стадии формирования усталостных бороздок ротации в перемычках маловероятны, поскольку масштабный уровень для реализации этого процесса является еще недостаточным, чтобы возможно было формирование сферических частиц. Однако по мере продвижения трещины и нарастания скорости ее роста в результате увеличения коэффициента интенсивности напряжений возникает ситуация, когда формирование сферических частиц становится возможным. Этот переход происходит при достижении следующего масштаба параметров дефектной структуры внутри зоны, разграничивающего мезоуровни I и II.

По мере перехода от зоны ЗК с максимальным растягивающим напряжением к ее центральному отверстию, где она располагается на валу редуктора, напряжения от контакта зубьев уменьшаются из-за их перераспределения между соседними зубьями и ограниченным перемещением или возможной деформацией самих зубьев. При этом динамические напряжения от вращения ЗК возрастают и нарастает максимальный уровень коэффициента интенсивности напряжения, если рассматриваемая траектория изменения напряжений вдоль радиуса колеса совпадает с траекторией возрастающей длины усталостной трещины. По мере продвижения усталостной трещины от периферии ЗК к ее оси происходит нарастание асимметрии цикла нагружения при уменьшении амплитуды переменных напряжений. Возникает естественный вопрос о длительности процесса зарождения и последующего роста трещины на основе анализа вида повреждающего цикла нагружения, который определяет продвижение трещины в ЗК за один цикл запуска и остановки двигателя.

Результатом измерений является разность напряжений At/ между обоими контактами, составляющая примерно несколько микровольт. Эта разность напряжений возникает как следствие токов коррозионного (гальванического) элемента в обсадной трубе, которые и определяют ее величину и направление (знак). Поскольку требуется высокая чувствительность, измерения можно проводить только при неподвижных контактах. Измерительные расстояния (между контактами) выбирают в зависимости от глубины и от предполагаемой опасности коррозии в пределах 10—25 м. Измеренные профили разности напряжений At/ дают кривую типа показанной на рис. 19.3.

разрушений известно, что наиболее неблагоприятным для развития повреждений оборудования является такое сочетание нагрузок, при котором металл локально находится под воздействием главных растягивающих напряжений. При этом зарождение трещин происходит по плоскостям, перпендикулярным этим напряжениям. Многолетний опыт исследования магнитных полей на трубопроводах и различном оборудовании выявил наличие устойчивых линий смены знака нормальной составляющей напряженности магнитного поля Нр в зонах развивающихся повреждений металла. Именно этот ди-,1гностический параметр (линия Нр=0) был положен в основу практических методик контроля оборудования с использованием магнитной памяти металла. Интерпретация этого диагностического магнитного параметра как линии главных напряжений, возникающей на поверхности труб под действием рабочих нагрузок, определяет места повреждения металла.

В окрестности дефекта на поверхности раздела в нагруженном композиционном теле локальные напряжения резко возрастают, особенно около границ дефекта. Если уровень локальных напряжений достаточно высок, то дефект становится неустойчивым и может развиться до столь больших размеров, что тело разрушится. При исследовании динамических задач теории упругости было установлено, что динамическая концентрация напряжений выше концентрации, рассчитанной для соответствующей статической задачи. Вследствие этого может оказаться, что дефект на поверхности раздела будет развиваться или нет в зависимости от того, прикладывается ли внешняя нагрузка внезапно, скачком, или же возрастает постепенно. Распространение дефекта вдоль поверхности раздела двух соединенных упругих тел с различными упругими константами и различными плотностями изучалось в работе Брока и Ахенбаха [17]. Было установлено, что развитие дефекта вызвано концентрацией напряжений, возникающей в тот момент, когда система горизонтально поляризованных волн достигает границы дефекта. Предполагалось, что разрыву адгезионных связей предшествует течение в слое, связывающем тела в единую систему. Была вычислена скорость перемещения переднего фронта зоны течения для различных значений параметров, определяющих свойства материала, и различных систем волн. Оказалось, что по достижении критического уровня пластической деформации происходит разрыв материала на заднем фронте зоны течения.

Теории зоны взаимодействия основаны на представлениях о концентрации упругих напряжений, возникающей у концов трещин в реакционной зоне. Пластическое течение матрицы или волокна существенно изменяет напряженное состояние.

Сварка делает возможным изготовление ротора из двух разнородных сталей: горячие части ротора, расположенные на периферии, могут быть изготовлены из стали аустенитного класса, а центральная часть — из стали перлитного класса. Такой ротор показан на фиг. 66, е. Сварка в конструкции турбинных роторов может играть и вспомогательную роль. Так, ротор, показанный на фиг. 66, г, образован центральной цельнокованой частью с валом, на который насажены диски. Насадные диски передают крутящий момент ротору через сварные швы, соединяющие их с валом. Благодаря такой конструкции удается избегнуть концентрации напряжений, возникающей в случае передачи крутящего момента с помощью шпонок. Для повышения гибкости соединения на валу делается выточка.

повышение прочности при переменных напряжениях в связи с отсутствием концентрации напряжений, возникающей в местах перехода сечений при ступенчатых конструкциях.

Результаты позволяют оценить допустимые величины переменной составляющей напряжений, возникающей в лопастях рабочих колес в процессе эксплуатации. Действительно, выразив из формулы

При нагружеани чугуна графитовые включения, являясь «надрезами», снижают его прочность и пластичность. Это происходит, во-первых, вследствие некоторого уменьшения живого сечения металлической основы из-за полостей, занятых графитом, имеющим небольшую прочность на разрыв, и, во-вторых, что наиболее важно, из-за высокой концентрации напряжений, возникающей в местах графитовых включений, особенно при пластинчатой форме графита. Чем длиннее пластинки графита, тем больше коэффициент концентрации напряжений. Все это приводит к резкой локализации пластических деформаций в металлической основе, исчерпанию пластичности материала в этих местах, развитию трещин и в итоге — к квазихрупкому разрушению материала при средних напряжениях и показателях пластичности, более низких, чем прочность и пластичность металлической основы чугуна.

В отдельных случаях, однако, переход разрушений в шов сопровождается заметным снижением уровня длительной прочности и пластичности. На рис. 40 приведены зависимости длительной прочности и пластичности сварного соединения стали 1Х12В2МФ (ЭИ756) со швом типа ЭФ-ХИВМФН. По длительной прочности металл шва несколько уступает основному металлу. В условиях испытания при 580° С длительностью до 500—1000 ч как стандартные, так и большие образцы разрушаются пластично по основному металлу. При большем времени испытания разрушение становится хрупким, переходя в шов вблизи границы сплавления. Характерным является то обстоятельство, что экспериментальные точки для больших и стандартных образцов хорошо укладываются на одной общей кривой, свидетельствуя об отсутствии влияния масштабного фактора. Можно высказать предположение, что данный характер разрушения обусловлен повышенной склонностью высокохромистого металла шва к концентрации напряжений, возникающей при растяжении вблизи границы сплавления из-за меньшей прочности шва по сравнению со сталью.

Рис. 14.2. Идеализированное схематичное изображение концентрации напряжений, возникающей при контакте шероховатостей и приводящей к возникновению микротрещин. 1 — образец; 2 — микротрещины фреттинга) 3 — зона фреттинга.

При таком подходе можно считать, что при неустановившейся ползучести скорость деформационного упрочнения больше, чем скорость возврата, скорость деформации больше, чем скорость ползучести (у >ys), внутренние напряжения т, увеличиваются при увеличении времени и деформации. В отличие от этого установившаяся ползучесть является таким процессом, когда тг является постоянным. Действительно, как можно наблюдать в чистых металлах, в области неустановившейся ползучести деформация происходит путем скольжения внутри кристаллических зерен. В результате этого происходит -релаксация локальной концентрации напряжений, возникающей вследствие взаимной интерференции полос скольжения, границ зерен или самих кристаллических зерен. Следовательно, происходит релаксация деформационного упрочнения. При этом кристаллические зерна разделяются полосами деформации или полосами сброса, происходит полигоциза-ция, образуются субзерна. В области установившейся ползучести величина этих субзерен не изменяется, но изменяется относительное положение субзерен вследствие переползания или поперечного скольжения дислокаций, т. е. возврата. Эти факторы обусловливают деформацию ползучести [7].

При нагружении чугуна графитовые включения, являясь «надрезами», снижают его прочность и пластичность. Это происходит, во-первых, вследствие некоторого уменьшения живого сечения металлической основы из-за полостей, занятых графитом, имеющим небольшую прочность на разрыв, и, во-вторых, что наиболее важно, из-за высокой концентрации напряжений, возникающей в местах графитовых включений, особенно при пластинчатой форме графита. Чем длиннее пластинки графита, тем больше коэффициент концентрации напряжений. Все это приводит к резкой локализации пластических деформаций в металлической основе, исчерпанию пластичности материала в этих местах, развитию трещим и в итоге — к квазихрупкому разрушению материала при средних напряжениях и показателях пластичности, более низких, чем прочность и пластичность металлической основы чугуна.

С ростом предела прочности стали резко усиливается отрицательное влияние коррозии на сопротивление усталости, что связано с большей чувствительностью высокопрочных сталей к концентрации напряжений, возникающей у коррозионных повреждений. В результате с ростом предела прочности стали пр'е-




Рекомендуем ознакомиться:
Наклонным направляющим
Наклонной плоскостью
Наклонное расположение
Наклонном положении
Накопления эксплуатационных
Накопления дислокаций
Накопления остаточной
Накопления продуктов
Начальное нагружение
Накопление деформации
Накопление пластических
Накопление усталостного
Накопленные погрешности
Накопленная пластическая
Накопленное усталостное
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки