Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Напряжения обусловленные



Контактные напряжения образуются в месте соприкосновения двух тел в тех случаях, когда размеры площадки касания малы по сравнению с размерами тел (сжатие двух шаров, шара и плоскости, двух цилиндров и т. п.). Если значение контактных напряжений больше допускаемого, то на поверхности деталей появляются вмятины, борозды, трещины или мелкие раковины. Подобные повреждения наблюдаются у зубчатых, червячных, фрикционных и цепных передач, а также в подшипниках качения.

Значительные напряжения образуются в поверхностных слоях в процессе механической обработки. Пластический сдвиг и разрушение металла при снятии стружки сопровождаются возникновением в близлежащих слоях остаточных напряжений разрыва. Чем грубее обработка, т. е. чем больше толщина снимаемого слоя и усилия резания, тем выше остаточные напряжения (при грубом точении стали возникают остаточные растягивающие напряжения 80-100 кгс/мм2). К механическим напряжениям-дрисоеди-няются термические напряжения, являющиеся результатом тепловыделения в зоне резания, а также напряжения, возникающие в результате структурных и фазовых превращений в очагах повышенного тепловыделения.

Высокие местные напряжения возникают в сварных соединениях при остывании и усадке расплавленного металла шва. Локальные напряжения образуются также в зоне дефектов шва (непровары, подрезы, рыхлоты, включения окислов, шлаков и т. д.).

образуются новые структуры с разрушением и переориентацией зерен в направлении действующих сил, развиваемых обрабатывающим инструментом. Изменение структуры поверхностного слоя и остаточные напряжения приводят к возникновению вблизи поверхности зон остаточных напряжений сжатия и растяжения и развитию межкристаллических областей с образованием микропор. Остаточные напряжения первого рода являются одной из важнейших характеристик качества поверхности трения. В табл. 2.1 приведены данные о величине и знаке этих напряжений при механической, термической и химикотермической обработке некоторых углеродистых и легированных сталей 31].

Харрингтон и др. [114], а также Елпатьевский и Васильев [92] независимо рассмотрели межслоевые касательные напряжения, возникающие в прослойке связующего, соединяющей два соседних слоя, у которых оси симметрии материала пересекаются под острым углом. Они установили, что эти напряжения образуются вследствие тенденции слоев к взаимному закручиванию, при этом один слой закручивается по часовой стрелке, а другой — против. В результате в такой структуре возникает самоуравновешенная система касательных напряжений.

Отметим в заключение, что большое различие в термическом расширении может существенно повлиять на прочность композитов с дисперсией частиц большого размера вследствие наличия трещин, образующихся в процессе изготовления. Хотя одинаковые остаточные напряжения образуются и в композитах, содержащих дисперсные частицы меньшего размера, трещины в процессе изготовления не образуются и можно получить упрочнение стеклянной матрицы такими дисперсными частицами несмотря на большое, различие в термическом расширении. Таким образом, как отмечено ранее, можно получить оптимальную прочность композита путем введения дисперсной фазы, состоящей из частиц малого размера.

(а) Остаточные напряжения. Остаточные напряжения образуются в неоднородных сплавах при охлаждении ниже температуры выплавки или при пластической деформации, когда температура ниже необходимой для их снятия. Вычисления, основанные на простых моделях, состоящих из упругих шариков и цилиндров или отдельного упругого включения в бесконечной упругопласти-ческой матрице, показывают, что величина термонапряжений не зависит от размера частицы [54, 58]. После охлаждения равномерно рассеянные частицы находятся в условиях сжатия, если коэффициент термического расширения у матрицы больше этого коэффициента у частиц, что часто характерно для систем, состоящих из твердых включений в металлической матрице. Такое напряженное состояние может способствовать разрушению хрупкой матрицы, однако оно препятствует возникновению трещин в частицах. (Как отмечено в [12], наличие включений сульфидов кальция и магния, имеющих больший коэффициент термического расширения, чем у матрицы, может, по-видимому, приводить при охлаждении к образованию пор у поверхностей раздела.) Влияние повышения концентрации включений обсуждалось в связи с энергией деформации точечных дефектов в кристаллах. Имеются решения, основанные на континуальной теории дефектов кристаллической решетки [25].

По теории Тейлора величина мгновенного предела текучести (сопротивления деформации) определяется внутренними напряжениями, которые мешают движению дислокаций. Дислокации, задерживаясь в кристаллах, постепенно создают внутренние напряжения, образуются дислокационные стенки и скопления, повышается величина сопротивления деформации данного материала.

Режимы обкатки или другого вида поверхностного упрочнения необходимо выбирать такими, при которых упрочнение не сопровождается брльшим нагревом обрабатываемой поверхности, поскольку остаточные напряжения образуются в результате суммарного воздействия пластической деформации, нагрева и фазовых превращений в металле. Если температура при накатке не превышает 150—180° С, то термопластические деформации не возникают и максимальные напряжения сжатия располагаются у самой поверхности детали.

Значительные напряжения образуются в поверхностных слоях-в процессе механической обработки. Пластический сдвиг и разрушение металла при снятии стружки сопровождаются возникновением в близлежащих слоях остаточных напряжений разрыва. Чем грубее обработка, т. е. чем больше толщина снимаемого слоя и усилия резания, тем выше остаточные напряжения (при грубом точении стали возникают остаточные растягивающие напряжения 80 — 100 кгс/мм2). К механическим напряжениям присоединяются термические напряжения, являющиеся результатом тепловыделения в зоне резания, а также напряжения, возникающие в результате структурных и фазовых превращений в оЧагах повышенного тепловыделения.

Высокие местные напряжения возникают в сварных соединениях при остывании и усадке расплавленного металла шва. Локальные напряжения образуются также в зоне дефектов шва (непровары, подрезы, рыхлоты, включения окислов, шлаков и т.д.).

Так как напряжения вызываются разными причинами, то различают временные напряжения, обусловленные действием внешней нагрузки и исчезающие после ее снятия, и внутренние остаточные напряжения, возникающие и уравновешивающиеся в пределах тела без действия внешней нагрузки.

Этот способ устраняет первоисточник усадочных напряжений, так как в каждый данный момент температура всех частей отливок одинакова. Напряжения, обусловленные торможением формы предотвращают, применяя податливые стержни.

В сварном шве и околошовной зоне возникают внутренние напряжения, обусловленные усадкой материала при остывании и вызывающие коробление изделия.

Кулачок и ведомое звено должны быть рассчитаны так, чтобы кон» тактные напряжения, обусловленные силами их взаимодействия, не превышали допускаемых, т. е. чтобы при всех положениях механизма соблюдались условия

Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионном перераспределением в них диффузионно-подвижных элементов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффициентов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурно-напряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.

Касательные напряжения, обусловленные поперечной силой Q, распределены по сечению равномерно, их эпюра изображена на рис. 2.49, а. Касательные напряжения, обусловленные крутящим моментом, достигают наибольшего значения у края сечения, их эпюра изображена на рис. 2.49, б. Из суммарной эпюры касательных напряжений (рис. 2.49, в) видно, что максимальное напряжение возникает в точках сечения, расположенных ближе к оси пружины, т. е. на внутренней части контура сечения витка:

Балки рассчитывают на прочность по наибольшим нормальным напряжениям, возникающим в их поперечных сечениях. При поперечном изгибе балок наряду с нормальными возникают и касательные напряжения, обусловленные наличием поперечной силы, но они в подавляющем большинстве случаев невелики и при расчетах на прочность не учитываются.

Пластическая холодная деформация (ниже температуры рекристаллизации) вызывает искажения пространственной решетки. Внутренние напряжения, обусловленные искажением решетки, затрудняют процессы намагничивания и размагничивания ферромагнитных металлов. Магнитная проницаемость при наклепе понижается и тем значительнее, чем больше степень обжатия, коэрцитивная сила, наоборот, возрастает с повышением степени обжатия. Ввиду того, что проницаемость зависит от напряженности поля и меняется на всем протяжении кривой намагничивания, для ха-

По характеру и охватываемым объемам остаточные температурные напряжения и напряжения, обусловленные пластической деформацией, относятся к напряжениям первого рода. Однако из-за неодинакового тепловыделения на смежных участках обрабатываемой поверхности и различной степени пластической деформации возникают

Пластическая холодная деформация (ниже температуры рекристаллизации) вызывает искажения пространственной решетки. Внутренние напряжения, обусловленные искажением решетки, затрудняют процессы намагничивания и размагничивания ферромагнитных металлов. Магнитная проницаемость при наклепе понижается и тем значительнее, чем больше степень обжатия, коэрцитивная сила, наоборот, возрастает с повышением степени обжатия. Ввиду того, что проницаемость зависит от напряженности поля и меняется на всем протяжении кривой намагничивания, для ха-

эффициента 'кинематической вязкости; Хп, тт — касательные напряжения, обусловленные соответственно вязкостным трением и турбулентным 'перемешиванием жидкости. Для области плоского потока, достаточно удаленной от стенки, VT>V, а т=тт. Тогда в соответствии с (5-41) турбулентную составляющую коэффициента кинематической вязкости можно представить зависимостью




Рекомендуем ознакомиться:
Накопленного усталостного
Начальное обогащение
Наладочной организации
Наложении электрического
Намагниченностью насыщения
Намагничивающее устройство
Нанесения гальванических
Нанесения металлического
Нанесения проявителя
Нанесения возмущения
Нанесение гальванического
Нанесение пенетранта
Начальное содержание
Наноматериалов полученных
Напыляемой поверхности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки