Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Напряжения прочность



В околошовной зоне диффузионно-подвижный водород взаимодействует с Си20, располагающейся по границам зерен; образующиеся пары воды, которые не растворяются в меди и не могут из нее выйти, создают в металле значительные напряжения, приводящие к образованию большого числа микротрещин. Это явление получило название водородной болезни меди. Для предупреждения водородной болезни меди следует снижать количество водорода в зоне сварки (прокалка электродов и флюсов, применение осушенных защитных газов). Окись углерода также может участвовать в раскислении меди по реакции

Характер адсорбции на отдельных кристаллографических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов.

При водо- и влагопоглощении (или потере влаги) возникают внутренние напряжения, приводящие к короблению или растрескиванию. Наиболее водостойкими являются полиэтилен, политетрафторэтилен, полистирол и др.; наименее водостойкими —древесно-слоистые пластики на основе фенольных смол, а также пластмассы на основе поливинилового спирта и амино-формальдегидных смол.

Флокены - это несплошности типа трещин. Считается, что чаще всего образованию флокенов способствует быстрое охлаждение стали, содержащей водород, в диапазоне температур от 200 до 20°С, при этом водород, выделяясь из раствора и переходя из атомарной формы в молекулярную, создает большие внутренние напряжения, приводящие к образованию трещин. Наиболее часто флокены встречаются в хромонике-левой стали.

Таким образом, при термообработке покрытия при температуре 573—1073° К (600—800° С) происходит химическое взаимодействие между различными компонентами покрытия, улучшающее сцепление между его слоями. Термообработка при температуре 1223° К (950° С) приводит к химическому взаимодействию между слоями, причем в покрытии возникают внутренние напряжения, приводящие в дальнейшем к растрескиванию покрытия.

Асимметрия цикла. Во многих случаях, кроме циклической составляющей напряжения, имеется статическая (постоянная) составляющая, т.е. нагружение происходит асимметрично. При возрастании статической составляющей напряжений циклические напряжения, приводящие металл к разрушению, снижаются, так как фактически разрушение определяется суммированием статических и циклических напряжений. Наиболее простой случай одновременного статического и циклического нагружения — наложение статического растяжения (или сжатия) при циклическом одноосном растяжении—сжатии. В этом случае напряжения алгебраически складываются и металл подвергается асимметричному растяжению-сжатию, пульсирующему растяжению или пульсирующему сжатию. На рис. 104, 105 представлены так называемые полные диаграммы усталости сплавов ВТЗ-1 и Ti—6 % AI—4 % V (типа сплава ВТ6) при различных температурах и различной концентрации напряжений (круговой надрез) [95 и др.]. Эти диаграммы представляют зависимость разрушающих циклических напряжений, которые уменьшаются при наложении возрастающего статического напряжения растяжения. Предельной точкой этих диаграмм является величина статического напряжения, равная пределу текучести материала, когда практически нулевые циклические напряжения могут привести к разрушению. Циклическая состав-

Выражение (3.19) допустимо использовать только для больших структур, когда в материале имеются несколько значительных начальных или производственных дефектов, которые при воздействии напряжений развиваются в трещины значительно быстрее, чем другие дефекты, или если конструктивные элементы усиливают локальные напряжения, приводящие к быстрому росту трещин. При указанных выше условиях в практических расчетах допустимо принимать N0~Q, так как в этих случаях N0 -С Nc; Л/т = 0.

1) в процессе обработки давлением в материале создаются высокие напряжения, приводящие в разрушению хрупких или малопластичных упрочняющих волокон;

С. т. УЗЭ применяется при изготовлении изделий сложной конфигурации. При подведении УЗЭ к свариваемым поверхностям в месте стыка возникают напряжения, приводящие к пластическим деформациям, в результате чего развивается повышенная темп-pa. Свариваемое изделие помещается между концом волновода преобразователя и зажимом, к к-рому прикладывается усилие, необходимое для создания давления на шов. Нагрев при С. т. УЗЭ происходит только в месте стыка (основное преимущество С. т. УЗЭ).

На износ поверхности трения тормозного шкива значительно влияет высокий градиент температуры слоев металла, отстоящих на разных расстояниях от поверхности трения. Вследствие разно сти температур этих слоев возникают многократно повторяемые температурные напряжения, приводящие к отслаиванию тонких слоев металла тормозных шкивов в машинах тяжелого режима работы и к появлению на поверхности грения микроскопических трещин, которые со временем увеличиваются и образуют «сетку», снижающую прочность поверхностного слоя. Исследование трения асбофрикционных материалов по стальному шкиву с поверхностью трения, закаленной или цементированной на глубину 1,2 мм, показало, что износоустойчивость стальных поверхностей в значительной мере зависит от содержания углерода в стали: цементированная сталь оказалась более износостойкой, чем закаленная сталь, и менее чувствительной к изменению условий трения. Однако при твердости НВ ]> 350 износ поверхности шкива был ничтожен для обоих методов обработки. Таким образом, испытания показали, что поверхностная закалка тормозного шкива токами высокой частоты, азотированием, цианированием или цементированием более способствует повышению износостойкости шкива, чем обьемная закалка. В случае применения вальцованной ленты металлический элемент должен быть выполнен из чугуна или стали с твердостью поверхности трения не менее НВ 250. Более низкая твердость стального элемента приводит к задирам на рабочих поверхностях, быстро выводящим металлические элементы пары из строя.

вызывает иногда значительные напряжения, приводящие к разрушению связей по поверхности слоев или растрескиванию самих слоев. Обычно трещины образуются на поверхности скрепления слоев около краев пластины.

§ 3.3. Прочность соединений и допускаемые напряжения

Допускаемые напряжения. Прочность сварных соединений, полученных конкретным способом сварки, зависит от следующих факторов: качества основного материала; характера действующих нагрузок (постоянные или переменные); технологических дефектов сварки (шлаковые и газовые включения, непровары и т. п.); деформаций, вызываемых сваркой; различной структуры и свойств наплавленного и основного металла и др. Поэтому допускаемые напряжения при расчете сварных соединений принимают пониженными в долях от допускаемых напряжений для основного металла. Нормы допускаемых напряжений для сварных соединений деталей из низко- и среднеуглеродистых сталей при статической нагрузке указаны в табл. 3.2, а при переменных нагрузках — см. [12] и [18].

Допускаемые напряжения. Прочность сварных соединений, полученных контактным способом сварки, зависит от следующих факторов: качества основного материала; характера действующих нагрузок (статические или переменные); технологических дефектов сварки (шлаковые и газовые включения, непровары и т. п.); деформаций, вызываемых сваркой; различной структуры и свойства наплавленного и основного металла и др. Поэтому допускаемые напряжения при расчете сварных соединений принимают пониженными, в долях от допускаемых напряжений для основного металла. Нормы допускаемых напряжений для сварных соединений деталей из низко-и среднеуглеродистых сталей при статической нагрузке указаны в табл. 3.2.

10. Головин Г. Ф. Остаточные напряжения, прочность и деформации при поверхностной закалке токами высокой частоты.— Л. : Машиностроение, 1973.— 215 с.

Создать технологию с непрерывным процессом разрушения массива затруднительно, поэтому дальнейшие исследования были направлены на то, чтобы снять указанные выше ограничения в условиях осуществления электрического пробоя. Требовалось создать условия, при которых пробой породы мог бы быть осуществим даже при наложении электродов только с одной свободной поверхности. В исследованиях электрической прочности жидких и твердых диэлектриков на косоугольной волне импульсного напряжения было установлено, что их вольт-временные зависимости пробоя (далее вольт-секундные характеристики - в.с.х.) характеризуются различным коэффициентом импульса ki. Данный коэффициент определяет степень роста напряжения пробоя на импульсном напряжении по отношению к напряжению пробоя на статическом напряжении (напряжении постоянного тока, тока промышленной частоты). С уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков, что приводит к инверсии соотношения электрических прочностей сред 121. На статическом напряжении электрическая прочность твердых диэлектриков, как правило, превышает прочность жидких диэлектриков в одинаковых разрядных промежутках. Однако на импульсном напряжении при экспозиции напряжения менее К)-6 с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород.

Сварка нагревательным элементом. Этот способ сварки применяют для герметических швов, преимущественно для труб, сосудов, лопаток центробежных насосов и т. д. * Прочность сварного шва зависит от способа нагрева, который может быть непосредственным (прямым) или косвенным. При косвенном нагреве и одновременном действии давления прочность соединения выше. Это можно объяснить тем, что при непосредственном нагреве возникают значительные внутренние напряжения. Прочность сварки нагревательными элементами для пластмасс характеризуется приведенными данными в табл. 2.

точки радиус т, мм тура t, °C напряжения прочность длительной

§ 3.3. Прочность соединении и допускаемые напряжения

В расчетах на прочность элементов конструкций теплоэнергетического оборудования и в машиностроении основным является расчет по допускаемым напряжениям. Критерием надежности конструкции будет выполнение условия прочности

7. Головин Г. Ф. Остаточные напряжения, прочность и деформации при поверхностной закалке токами высокой частоты. МЛ Машиностроение, 1973, 144 с,




Рекомендуем ознакомиться:
Нанесением гальванических
Нанесение лакокрасочных
Нанесение проявителя
Нанесении лакокрасочных
Наносится непосредственно
Напаянными пластинками
Наплавляемой поверхности
Наплавленных поверхностей
Наплавочного материала
Наполненных композиций
Наполнитель хризотило
Наполнителей используют
Напорного золотника
Напряжений являющихся
Начальное ускорение
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки