Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Остаточных сварочных



Прокаливаемость сердцевины должна обеспечить высокие механические свойства, особенно повышенный предел текучести, и твердость HRC 30—40. При циклических нагрузках сопротивление цементованных и нитроцемептованных деталей разрушению зависит от прочности сердцевины. Повышение прочности сердцевины способствует увеличению контактной прочности. Так, при твердости выше HRC 35 допустимые контактные напряжения при базе 107 циклов составляют 1900 МПа, а при твердости HRC 25—35 не превышают 1750 МПа. Однако сближение прочностных свойств слоя и сердцевины снижает уровень остаточных сжимающих напряжений на поверхности, а увеличение объема, претерпевающего фазовые и структурные превращения при термической обработке, повышает деформацию и коробление деталей после закалки. Оба фактора приводят к снижению предела выносливости деталей. Для получения высокого сопротивления хрупкому разрушению и возможности использования непосредственной закалки после цементации стали должны быть наследственно мелкозернистые (балл 6—10).

При поверхностной закалке (обработка ТВЧ, газопламенная закалка) и химико-термической обработке (цементация, нитроцементация, азотирование) упрочнение обусловлено главным образом возникновением в поверхностном слое остаточных сжимающих напряжений вследствие образования структур большего удельного объема (мартенсит при цементации и закалке ТВЧ, нитриды и карбонитриды при нитроцементации и азотировании), чем структуры основного металла. Расширение поверхностного слоя тормозит сердцевина, сохраняющая исходную перлитную структуру, вследствие чего в поверхностном слое возникают двуосные (а в цилиндрических деталях — трехосные) напряжения сжатия. В нижележащих слоях развиваются реактивные растягивающие напряжения, имеющие небольшую величину вследствие незначительности сечения термически обработанного слоя сравнительно с сечением сердцевины.

Поэтому широко применяют поверхностные упрочнения. Их эффект складывается из упрочнения поверхностного слоя и из создания в нем остаточных сжимающих напряжений, которые вычитаются из опасных растягивающих напряжений от внешней нагрузки. Поверхностные упрочнения цементацией и закалкой повышают, по сравнению с объемной закалкой до той же твердости, сопротивление усталости на 30...40 % и более.

Иначе обстоит дело, если разгружающее отверстие просверлено в кончике трещины после ее обнару/кения. Эффективность такого, известного практикам, приема определяется различного рода факторами: устранением сингулярности напряжений и наиболее поврежденного материала в кончике трещины; появлением остаточных сжимающих напряжений в процессе холодной обработки и уменьшением чувствительности материала к концентрации напряжений и т. и. Количественная оценка столь многофакторного явления не менее сложна, чем оценка скорости распространения трещины при использовании для ее торможения ребер жесткости, отверстий иод заклепки, отверстий — «лонуHICK» и т. п. Можно предложить следующий ин-.? "3 '. женерный подход к оценке эффективности торможения трещин с помощью .ча-сверлшшния ео концов, основанный па принципе равнопрочности. Учитывая, что элементы конструкции содержат, как [[ранило, концентраторы напряжении1, представляется возможным выбран» из них те, которые работают и условиях-, аналогичных элементам, содержащим трещину. Тогда можно считать, что достаточный эффект торможения засверленной 21.0. Схема об- но концам трещины достигнут, если тео-ра.чца. ротический коэффициент концентрации

Учитывая идеализироваиность рассматриваемой модели и появление остаточных сжимающих напряжений при разгрузке, следует считать, что при снятии нагрузки (и уменьшении расстояния между поверхностями трещины) приращение трещины также уменьшается. Таким образом, если приращение длины трещины па i-м цикле по докритической диаграмме разрушения составит величину А/,, то длина трещины па (г+1)-м цикле будет lt±, = lf +a.i\li (рис. 30.3). Коэффициент снижения приращения длины а < 1 определяется эмпирически по экспериментальным кривым / — N для данного материала данной толщины. Не исключено, что этот коэффициент меняется с длиной трещины, т. е. с ростом числа циклов и коэффициента асимметрии цикла (в следующем параграфе, на основании экспериментов, будет показано, что это действительно так).

При фрикционно-упрочняющей обработке в поверхностном слое деталей формируются только нормальные остаточные напряжения. Глубина распространения и величина остаточных сжимающих напряжений, полученных обкаткой, при прочих равных условиях повышают вязкость разрушения стальных деталей.

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17-20 раз, а предел выносливости-в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г— 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин

Отметим основные закономерности повышения предела выносливости титановых сплавов в результате ППД, общие для различных методов. Установлено [191, 192], что эффективность ППД в пряной мере сохраняется до температуры примерно 200°С, а частично до 500°С и даже выше. Эффект не изменяется во времени и в средах, не опасных для титановых сплавов без ППД. Положительное влияние ППД на усталостную прочность в определенной степени сохраняется даже при полном снятии остаточных сжимающих напряжений низкотемпературным отжигом вплоть до рекристаллизационного. В этом случае положительное действие ППД можно объяснить "облагораживанием" микроструктуры поверхностного слоя, которая после наклепа и рекристаллизации становится очень однородной, мелкозернистой, т.е. наиболее благоприятной по сопротивлению появлению усталостных трещин. Кроме того, благодаря измельчению зерна и субзерен процесс образования пластических микросдвигов затрудняется и усталостная прочность растет.

Известно несколько механизмов, определяющих причины возникновения закрытия трещины или неполного ее смыкания при снятии нагрузки [27, 28]. Все они в той или иной мере указывают на возникновение смыкания берегов трещины из-за наличия остаточных сжимающих напряжений перед вершиной трещины, пластических сдвигов в вершине трещины и пр. (рис. 3.15). Применительно к металлам, в которых у поверхности образца или детали выявлен зигзагообразный характер распространения трещины, неполное смыкание ее берегов объясняют возникновением контакта по элементам рельефа формируемого развитого излома. Перемещение локальных участков поверх-

Однако наличие в вершине трещины остаточных сжимающих напряжений в зоне пластической деформации от предыдущего цикла нагружения препятствует пластическому притуплению ее вершины. Поэтому вершина мезотуннеля в локальной зоне фронта усталостной трещины раскрывается упруго и имеет в сечении треугольную форму [83]. Наблюдаемый по поверхности зигзагообразный характер роста трещины характеризуется многообразием профилей локального фронта (рис. 3.17) (мезотуннели). Поэтому общая закономерность роста трещины с учетом эффекта мезотуннелиро-вания трещины состоит в следующем.

(1) — на этапе I-II прикладываемая нагрузка затрачивается на преодоление остаточных сжимающих напряжений, поэтому АЭ отсутствует;

В процессе высокотемпературной эксплуатации происходит карбидное и иитерметаллидиое упрочнение металла шва и соответствующее снижение его пластических свойств, что приводит к локализации в околошовной зоне деформаций и образованию в пей трещин. Этому способствует и высокий уровень остаточных сварочных напряжений в сумме с рабочими напряжениями. Предотвращение подобных локальных разрушений достигается термообработкой — аустепитизацией при температуре 1050—1100° С для снятия остаточных сварочных напряжений и самопаклепа и придания сварному соединению более однородных свойств. В ряде случаев аустспитизация сопровождается последующим стабилизирующим отжигом при температуре 750—800° С для получения относительно стабильных структур за счет выпадения карбидной и интерметаллпдной фаз.

Наблюдается еще один вид коррозионного разрушения — коррозионное растрескивание, возникающее под совместным действием растягивающих напряжений и агрессивной среды. Разрушение развивается как межкристаллитное, так и транскристаллит-ное. Снижение уровня остаточных сварочных напряжений — одна из основных мер борьбы с этим видом коррозионного разрушения.

наличие остаточных сварочных напряжении в сталях разного структурного класса; эти напряжения в большинстве случаен по могут быть сняты термообработкой ввиду различных оптимальных условий термообработки сталей различного тина и различия величин коэффициентов линейного расширения.

Вид термообработки сварных соединений из разнородных аустепитных сталей определяется условиями их работы, типом конструкции и марками свариваемых сталей. При сварке конструкций из термически неупрочняемых сталей, предназначенных для работы в интервале умеренных температур при отсутствии требований к снятию сварочных остаточных напряжений, термообработку можно не проводить. Если же по условиям работы конструкции необходимо снятие остаточных сварочных напряжений, то проводят стабилизацию при температуре 800— 850° С. Если конструкция предназначена для работы при высоких температурах, то предпочтительнее аустспитизация при температуре 1100-1150° С.

Локализованный нагрев при сварке приводит к образованию в металле и околошовной зоне остаточных (сварочных) напряжений, которые могут достигать предела текучести и более. Причем, в сварном шве они растягивающие, в зоне термического влияния - сжимающие. Сварочные напряжения складываясь с рабочими от действия внутреннего давления часто способствуют к снижению работоспособности сосудов и труб. Поэтому, возникает практически важная задача снятия сварочных напряжений.

Отмеченные фрактографические закономерности изломов металла характерны и для сварных соединений. Однако специфические макро- и микроструктурные особенности сварных соединений накладывают определенные отпечатки на характер их разрушения. Отличительной особенностью сварных соединений является структурная неоднородность, обусловливающая различие механических и химических свойств отдельных участков (механическая неоднородность). Кроме того, в сварных соединениях более вероятно появление дефектов (непровар, холодные и горячие трещины, поры, включения и др.) и выше уровень напряженности из-за остаточных (сварочных) напряжений. Металл шва в большинстве случаев имеет более высокие механические свойства, поэтому при отсутствии макроскопических дефектов при статическом нагружении разрывы происходят по основному металлу по механизму вязкого или хрупкого разрушения. Однако наличие дефектов и участков с различными вязкопластическими характеристиками существенно изменяет характер и местоположение разрыва (рис.2.4; 2.5). Даже незначительные подрезы в швах могут перевести место разрушения с основного металла (ОМ) в область шва (Ш) или зоны термического влияния (ЗТВ). При этом плоскости разрушения располагаются вблизи линий сплавления (рис. 2.4,6), под углом 45° (рис. 2.4,в) и 90° (рис.2.4,г) к направлению действия максимальных напряжений. Прямой излом может реализоваться как при вязком, так и хрупком разрушениях, но с различными фрак-тографическими параметрами поверхности излома. Непровар швов способствует разрушению в результате косого среза (рис.2.4,л) или прямого излома (рис. 2.4,м). При наличии в изломе нескольких очагов разрушения поверхность излома имеет сложное очертание с различной ориентацией к направлению действия максимальных главных напряжений. Нередко в сварных соединениях имеют место так называемые мягкие и твердые прослойки (рис. 2.5).

Рекомендации по устранению возможных разрушений: изменить конструкцию, увеличив расстояние между краями патрубка и люка (с целью уменьшения концентрации напряжений); обратить внимание на технологию сварки и последующую термообработку (с целью уменьшения остаточных сварочных напряжений) и усилить контроль за ударной вязкостью металла.

Расчету сборочных и сварочных устройств на прочность и жесткость Должен предшествовать анализ силового взаимодействия изделия и приспособления. Результатом такого анализа в общем случае может быть определение усилий, необходимых, во-первых, для ограничения перемещений, возникающих в результате деформирования изделия в процессе сварки и последующего остывания. Во-вторых, для подгибки элементов при сборке с целью плотного прижатия сопрягаемых деталей и устранения местных зазоров. В-третьих, для предварительного деформирования изделия с целью компенсации остаточных сварочных деформаций (если это входит в задачу разрабатываемого приспособления).

Характерное распределение остаточных сварочных напряжений при сварке встык пластины показано на рис. 22.

Уменьшение остаточных сварочных напряжений. Способы уменьшения остаточных напряжений делят на термические, механические и термомеханические. Наиболее эффективно снятие остаточных напряжений способами, осуществляемыми после сварки.

3. Какие способы применяют для уменьшения и устранения остаточных сварочных напряжений?




Рекомендуем ознакомиться:
Осуществляется посредством
Осуществляется преобразование
Осуществляется различными
Осуществляется скольжением
Осуществляется специальным
Осуществляется включением
Останется неподвижным
Осуществляет инверсионное
Осуществляться несколькими
Осуществлять измерение
Осуществлять обработку
Осуществляются мероприятия
Осуществляют непосредственно
Осуществляют следующие
Осуществления автоматической
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки