Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Остаточной намагниченности



Магнитотвердые материалы применяют для изготовления постоянных магнитов. Они характеризуются величинами остаточной индукции, коэрцитивной силы и магнитной анергии. В настоящее время разработаны материалы, обладающие коэрцитивной силой до 360 кА/м, остаточной магнитной индукцией до 1,6 Т и магнитной энергией до 40— 50 кДж/м8. В качестве магнитотвердых материалов используют: пар-тенситовые стали ЕХЗ, ЕВ6, ЕХ5К5, ЕХ9К15М2 (ГОСТ 6862—71) (буквы означают! Е—сталь магнитотвердая, X — хром, В — вольфрам; К — кобальт, М — молибден), сплавы на основе меди, железа, кобальта, никеля, алюминия и других металлов: ЮНД4, ЮНД8, ЮНДС, ЮНДК15, ЮНДК18, ЮНДК35Т5, ЮНДК34Т5, ЮН14ДК24, ЮН13ДК246, ЮН13ДК25А, ЮН13ДК25БА и т. д. (ГОСТ 17809—72)1 деформируемые сплавы Викаллой 1 и II, Кунифе I и II, Кунико I и II, бариевые сплавы (магнитотвердые ферриты), 1БИ, 1БИ1, 1БИ2, 2БА, 2БА1, ЗБА, 1.5КА, 2КА (ОСТ 11 ПО 707.002); высококоэрцитивные сплавы на основе благородных металлов PtFe, PtCo и AgMnAl.

из электронного блока и накладного преобразователя в виде приставного электромагнита со съемными полюсными наконечниками, в магнитную цепь которого встроен датчик Холла. Размер контактной поверхности преобразователя: толщина полюса 5 мм; ширина полюса 15 мм; межполюсное расстояние 30 мм. Принцип работы прибора состоит в намагничивании контролируемого участка детали накладным преобразователем и последующем размагничивании этого участка нарастающим полем и фиксации напряженности поля, соответствующей коэрцитивной силе. Возможно также измерение амплитуды сигнала датчика Холла, соответствующей остаточной магнитной индукции, после размштшчивания предварительно заданным током.

МАГНИКО - магнитотвёрдый материал - сплав железа (основа) с кобальтом (24%), никелем (14%), алюминием (8%) и медью (3%). Характеризуется высокими значениями остаточной магнитной индукции и коэрцитивной силы. Анизотропность магнитных св-в М. достигается тер-мич. обработкой в магн. поле. Из М. изготовляют магниты для электроиз-мерит., радиотехн. и др. аппаратуры. МАГНИТ [греч. magnetis, от Magnetis Ifthos, букв.- камень из Магнесии (др. город в Малой Азии)] - тело,

магнитожёсткие материалы,-ферромагнитные материалы, к-рые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магн. полях напряжённостью в тысячи и десятки тысяч А/м; характеризуются высокими значениями коэрцитивной силы, остаточной магнитной индукции, магн. энергии на участке размагничивания («спинка» петли гистерезиса). Из М.м. в технике применяют: литые и порошковые (недеформируемые) магнитные материалы типа железо - алюминий - никель - кобальт; деформируемые сплавы типа железо - кобальт - молибден, железо - кобальт - ванадий, платина - кобальт; нек-рые ферриты. В качестве М.м. используются также соединения редкозем. элементов с кобальтом; сплава типа алии, алнико, викаллой и др. Из М.м. изготовляют пост, магниты. МАГНИТОТОРМОЗНОЕ ИЗЛУЧЕНИЕ -то же, что синхротронное излучение. МАГНИТОУПРУГИЙ ПРЕОБРАЗ'ОВА-ТЕЛЬ, магнитоупругий датчик, - измерительный преобразова-

из электронного блока и накладного преобразователя в виде приставного электромагнита со съемными полюсными наконечниками, в магнитную цепь которого встроен датчик Холла. Размер контактной поверхности преобразователя: толщина полюса 5 мм; ширина полюса 15 мм; межполюсное расстояние 30 мм. Принцип работы прибора состоит в намагничивании контролируемого участка детали накладным преобразователем и последующем размагничивании этого участка нарастающим полем и фиксации напряженности поля, соответствующей коэрцитивной силе. Возможно также измерение амплитуды сигнала датчика Холла, соответствующей остаточной магнитной индукции, после размагничивания предварительно заданным током.

МАГНИКО — магнитно-твёрдый материал на основе железа, содержащий кобальт (24%), никель (14%), алюминий (8%) и медь (3%). Относится к ди-сперсионно-твердеющим сплавам. Характеризуется высокими значениями остаточной магнитной индукции и коэрцитивной силы. Анизотропность магнитных св-в М. достигается термич. обработкой в магнитном поле.

МАГНИТНО-ТВЁРДЫЕ МАТЕРИАЛЫ, м а г-нитно-жёсткие материалы,— магнитные материалы, к-рые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряжённостью до десятков кА/м; характеризуются высокими значениями коэрцитивной силы, остаточной магнитной индукции (1 Т и более; 1 Т = 104Гс). Из М.-т. м. в технике применяют: литые и порошковые (недеформируемые) магнитные материалы типа Ре — --- А1 — N1 — Со; деформируемые сплавы типа Fe — Со — Mo, Fe — Со — V, Pt — Co; ферриты. В качестве М.-т. м. используются также соединения редкоземельных элементов (особенно лёгких) с кобальтом; магнитопласты и магнитоэласты из порошков алии, алнико, ферритов со связкой из пластмасс и резины; микропорошковые магниты, изготовляемые из порошков Fe, Fe — Со, Mn — Bi, SmCOs. Из М.-т. м. изготовляют пост, магниты, используемые в измерит, приборах, микродвигателях и т. п.

Остаточной магнитной индукцией Вг называют индукцию, которая остается в предварительно намагниченном до насыщения материале после снятия магнитного поля.

В результате термообработки величина Не увеличивается, достигая максимального значения после нагрева при 350 °С При дальнейшем повышении температуры нагрева коэрцитивная сила уменьшается Величина максимальной магнитной индукции зависит от содержания фосфора в покрытии и температуры термообработки С повышением температуры нагрева величина максимальной магнитной индукции увеличивается, достигая наибольшего значения в интервале температур 350—500 °С Дальнейший рост темпе ратуры нагрева приводит к снижению этой величины С увеличением содержания фосфора в покрытии величина максимальной магнитной индукции снижается На характер изменения величины остаточной магнитной индукции с повышением температуры обработки оказывает большое влияние содержание фосфора в осадке

Включение бора в решетку кобальта вызывает резкое уменьшение величин максимальной и остаточной магнитной индукции кобальта Наблюдается также изменение магнитных свойств Со — В покрытия в результате нагревания поскольку фазы СозВ и Со2В характеризуются низкими значениями ферромагнитных характеристик, после отжига наблюдается значительное возрастание коэрцитивной силы Со — В покрытий от 640 до 1280 А/м

Магнитотвердые материалы применяют для изготовления постоянных магнитов. Они характеризуются величинами остаточной индукции, коэрцитивной силы и магнитной энергии. В настоящее время разработаны материалы, обладающие коэрцитивной силой до 360 кА/м, остаточной магнитной индукцией до 1,6 Т и магнитной энергией до 40— 50 кДж/м3. В качестве магнитотвердых материалов используют: мар-тенситовые стали ЕХЗ, ЕВ6, ЕХ5К5, ЕХ9К15М2 (ГОСТ 6862—71) (буквы означают! Е—сталь магнитртвердая, X — хром, В — вольфрам; К — кобальт, М — молибден), сплавы на основе меди, железа, кобальта, никеля, алюминия и других металлов: ЮНД4, ЮНД8, ЮНДС, ЮНДК15, ЮНДК18, ЮНДК35Т5, ЮНДК34Т5, ЮН14ДК24, ЮН13ДК246, ЮН13ДК25А, ЮН13ДК25БА и т. д. (ГОСТ 17809-72)? деформируемые сплавы Викаллой I и II, Кунифе I и II, Кунико I и II, бариевые сплавы (магнитотвердые ферриты), 1БИ, 1БИ1, 1БИ2, 2БА, 2БА1, ЗБА, 1.5КА, 2КА (ОСТ 11 ПО 707.002); высококоэрцитивные сплавы на основе благородных металлов PtFe, PtCo и AgMnAl.

а—деталь размагничена: б— деталь намагничена до индукции насыщения; в — деталь намагничена до остаточной намагниченности

таль намагничена до индукции насыщения; в) - деталь намагничена до остаточной намагниченности

При проведении диагностики используются индикатор механических напряжений ИМНМ-1Ф, индикаторы концентрации напряжений ИКНМ-2Ф, ИКН-1М. Метод основан на регистрации напряженности магнитного поля рассеяния Нр, характеризующей распределение остаточной намагниченности, на контролируемой поверхности изделия. При этом на поверхности вблизи стыков и на самом шве специальной зачистки не требуется. Для этого производится сканирование датчика прибора вдоль поверхности сварного стыка по всему периметру наружного диаметра конструктивного элемента аппарата и записываются полученные значения напряженности магнитного поля рассеяния Нр.

После выключения насыщающего магнитного поля Я, вектор намагниченности домена возвращается в положение, показанное на рисунке 1.3.11, в. Кристалл сохраняет остаточную намагниченность Мг = В^ц$, численное значение остаточной намагниченности определяется как проекция вектора намагниченности (рисунок 1.3.11, в) на направление намагничивающего поля Я. Если намагничивающее поле Я совпадает с одним из направлений легкого намагничивания, то остаточная индукция будет равна индукции насыщения Вт = Bs я гистерезисная петля будет иметь прямоугольную форму (рисунок 1.3.13).

В работах [72, 89, 97, 98,] приведены результаты исследования зависимости электрофизических параметров: коэрцитивной силы, магнитной проницаемости, остаточной намагниченности и удельной электрической проводимости, от приложенного к образцу механического напряжения. На рисунке 2.2.6 показаны зависимости коэрцитивной силы и начальной магнитной проницаемости от сжимающих и растягивающих напряжений для средне - и высокоотпущенных сталей [97], а на рисунке 2.2.7 представлены зависимости коэрцитивной силы от числа циклов при испытаниях на малоцикловую усталость [98].

Взаимосвязь напряженно-деформированного состояния металла с параметрами гармонических составляющих спектра вторичного электромагнитного поля. В работах [62, 66, 67] приведены результаты теоретических и экспериментальных исследований взаимосвязи электрофизических параметров металлов - магнитной проницаемости, удельной электрической проводимости, коэрцитивной силы, остаточной намагниченности и др. с параметрам!: гармонических составляющих спектра сигнала накладных и проходных вихретоковых преобразователей. Как было показано выше, существует корреляция между электрофизическими и механическими параметрами металлов в напряженно-деформированном состоянии. Соответственно существуют корреляционные связи между параметрами гармонических состлвляющих сигнала вихретоковых преобразователей и изменениями струкгуры и механических свойств металлов в напряженно-деформированном < «стоянии. В этом плане важной задачей является выявление возможностей и условий прогнозирования пределов текучести и прочности изделий эез их разрушения по результатам измерений параметров гармонических составляющих спектра сигнала вихретокового преобразователя.

При контроле ферромагнитных изделий на остаточной намагниченности поле дефекта самопроизвольно ориентируется в направлении норма-

точувствительные элементы - магниторезисторы, магнитодиоды и др. или короткозамкнутая обмотка может быть выполнена из материала, сопротивление которого изменяется под действием магнитного поля (магнитоин-дукгавный эффект). В этом случае имеем строчный преобразователь магнитных полей, который можно применять для контроля ферромагнитных изделий в приложенном магнитном поле или на остаточной намагниченности. Элементарные электромагнитные преобразователи ячеек могут быть выполнены как с сердечником, так и без него. Например, обмотки возбуждения могут быть выполнены в виде катушек с неравномерной плотностью намотки, формирующих электромагнитное поле П-образной импульсной формы по пространственным координатам. Измерительная обмотка является общей для всех ячеек.

Магнитные поля рассеяния дефектов. При намагничивании короткой детали изделия на се торцах создаются магнитные полюсы. По аналогии с электростатикой им приписывают определенный магнитный заряд (фиктивный), поверхностная плотность которого численно равна изменению намагниченности. Если в сечении детали имеет место нарушение сплошности или другая неоднородность, приводящие к изменению намагниченности, то в этом месте также образуются полюсы, поле которых образует магнитное поле рассеяния. Магнитное поле рассеяния дефекта Яд тем больше, чем больше дефект и чем ближе он к поверхности, над которой проводится измерение. Чувствительность метода контроля зависит от типа дефекта. Дефекты обтекаемой формы с округлыми краями выявляются хуже, чем дефекты с острыми краями. Магнитное поле дефекта, индикация которого дает возможность его обнаружить, тем больше, чем выше индукция материала и меньше нормальная и дифференциальная магнитные проницаемости. В некоторых материалах (например, легированных и высокоуглеродистых сталях) Яд имеет значительную величину при остаточной намагниченности. По величине и топографии (пространственному распределению) Яд можно судить о величине и расположении дефекта.

На предприятиях отрасли длительное время эксплуатировались и хорошо себя зарекомендовали переносной дефектоскоп ПМД-70 и передвижной дефектоскоп МД-50П, которые были заменены переносным дефектоскопом ПМД-87П и передвижным дефектоскопом МД-87П. Дефектоскоп МД-10ВП позволяет способом остаточной намагниченности выявлять дефекты, распространяющиеся в любых направлениях на проверяемом изделии с использованием одной технологической операции намагничивания. Из специализированных дефектоскопов можно отметить дефектоскоп для контроля колец подшипниковых пар МД-89П, в котором унификация схемных и конструктивных решений составляет порядка 60 %.

Магнитографические дефектоскопы. Основной элемент в магнитографическом дефектоскопе - магнитная лента - выполняет двойную роль: сначала служит индикатором поля дефекта, фиксируя это первичное, исходное поле в виде пространственного распределения остаточной намагниченности рабочего слоя, а затем сама становится источником вторичного, отображенного магнитного поля, которое, в свою очередь, считывается еще одним индикатором. Соответственно этому магнитографический контроль состоит из двух операций: записи и считывания. Для первой операции необходимы устройства намагничивания (чаще всего электромагниты) и крепления ленты на изделии, для второй - считывающие устройства (собственно дефектоскопы). Возможно определение указанных процессов в едином устройстве (например, с использованием кольцевых лент или магнитных валиков, прокатываемых по изделию). В настоящее время успешно ведутся работы по замене магнитных лент многоэлементными электромагнитными преобразователями, позволяющими преобразовать топографию поля рассеяния дефекта сразу в оптическое изображение на экране видеоконтрольного устройства, минуя промежуточные операции записи - считывания.




Рекомендуем ознакомиться:
Останется неподвижным
Осуществляет инверсионное
Осуществляться несколькими
Осуществлять измерение
Осуществлять обработку
Осуществляются мероприятия
Осуществляют непосредственно
Осуществляют следующие
Осуществления автоматической
Осуществления пластической
Осуществления технологического
Остановка холодильных
Отчетливо показывает
Отчетливо выявляются
Отыскания периодического
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки