Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Относительно нарезаемого



Представляет определенный интерес использование внешнего магнитного поля для отклонения или перемещения непрерывно горящей дуги. Внешнее переменное или постоянное магнитное ноле, параллельное или перпендикулярное к направлению сварки, создается П-образпыми электромагнитами. При использовании постоянного магнитного поля дугу можно отклонить в любую сторону относительно направления сварки. При отклонении дуги в сторону направления сварки (магнитное поле таюке параллельно направлению сварки) наблюдается такой же эффект, как и при сварке наклонным электродом — углом вперед. В этом случае уменьшается глубина проплавлепия. При отклонении дуги в обратном направлении наблюдается увеличение глубины проплавлепия, как при сварке с наклоном электрода углом назад.

На минимальный радиус гшщ оказывают влияние расположение линий изгиба относительно направления прокатки (волокон макроструктуры), наличие и величина заусенцев. Линию изгиба желательно располагать так, чтобы растяжение при гибке происходило в направлении волокон макроструктуры и чтобы заусенцы, образующиеся при вырубке, были минимальными и по возможности располагались в зоне сжатия, а не в зоне растяжения.

Здесь V— коэффициент вращения кольца: V= 1 при вращении внутреннего кольца подшипника относительно направления радиальной нагрузки и У= 1,2 при вращении наружного кольца.

Макро- и микроскопические исследования поверхности изломов (фрактография) позволяют, с одной стороны, вскрыть механизм разрушений, с другой, - обосновывать рекомендации по их предупреждению (по выбору материалов, способов и режимов сварки, термической обработки, контролю качества). При анализе изломов сварки, термической обработки, контролю качества. При анализе изломов важно установить параметры очага разрушения (зоны инициирования разрушения), который обычно располагается в наиболее напряженных и охрупченных областях (дефекты различного происхождения, конструктивные концентраторы напряжений) основного металла (ОМ), сварного шва (Ш) и зоны термического влияния (ЗТВ). Очаги разрушения обнаруживаются в местах наибольшего раскрытия кромок в полюсе выпученного разрыва с использованием закономерностей механики разрушения. Поверхность излома имеет определенную ориентацию относительно направления силовых воздействий

Вязкое разрушение, как правило, реализуется при напряжениях, больших предела текучести (ат) в результате развития деформаций сдвига, сопровождаемых значительным (более 15%) утончением кромок разрыва. Плоскость вязкого разрушения обычно совпадает с плоскостью действия максимальных касательных напряжений, которые направлены под углом, близким к 45° относительно направления действия максимальных главных напряжений. Эти плоскости могут равновероятно образовываться в двух взаимно перпендикулярных направлениях (рис.2.1,а).

ветствующих напряжениях, превышающих предел текучести. Эксплуатационные напряжения обычно (примерно вдвое) меньше предела текучести, и только при гидравлических испытаниях могут достигать ат. Таким образом, вязкое разрушение при эксплуатации трубопроводов и сосудов может реализоваться только лишь при наличии в металле микроскопических дефектов. Плоскость вязкого разрушения труб и сосудов с макроскопическими дефектами (рис. 2.3) не совпадает с плоскостями среза, а проходит под некоторым углом, меньшим чем 45° относительно направления действия максимального главного напряжения (рис. 2.3,а). Видимо это объясняется тем, что несимметричное расположение трещины относительно оси симметрии (действия напряжения) приводит к возникновению изгибающих моментов. В некоторых случаях вязкая трещина ориентируется перпендикулярно направлению действия максимального напряжения. Последний вид разрушения всегда реализуется при распространении хрупкой трещины (рис. 2.3,в) с характерными фрактографическими особенностями. Следует отметить, что чисто вязкое и хрупкое разрушение на практике реализуется редко. Чаще возникают комбинированные разрывы, чередующиеся вязким, квазихрупким и хрупким изломами, Например, хрупкая трещина при ее остановке может иметь характерные свойства вязкого излома.

При внецентренном нагружении шатуна силой сжатия (рис. 52, а) в стержне шатуна возникают дополнительные напряжения изгиба, из-за чего приходится увеличивать сечение стержня, а следовательно, и массу конструкции. Тот же недостаток, но в меньшей степени, присущ конструкции на рис. 52,6, где внецентренный изгиб возникает вследствие асимметрии сечения стержня относительно направления действия сил. В рациональной конструкции (рис. 52, в) с симметричными относительно нагрузки сечениями нагрузка приводится к чистому сжатию; при прочих равных условиях масса конструкции получается наименьшей.

Торцовые поверхности трения отверстий предпочтительнее обрабатывать способами, при которых инструмент (или изделие) вращается вокруг центра отверстия (точение, растачивание, зенкерование). Остающиеся после такой обработки микрориски благоприятнее ориентированы относительно направления рабочего движения, чем продольные или поперечные риски, образующиеся при строгании и фрезеровании. Поверхности, обработанные этим способом, прирабатываются быстрее. Кроме того, при такой обработке легче обеспечить перпендикулярность поверхности трения к оси вращения.

Качественно новые свойства достигаются при фазовом превращении потока теплоносителя внутри примыкающего к сплошной стенке проницаемого материала. В первую очередь, перенос теплоты от стенки теплопроводностью через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при кипении теплоносителя или сплошной пленкой конденсата при конденсации потока пара. Это позволяет полностью осуществить фазовое превращение потока при высокой интенсивности теплообмена. Кроме того, капиллярные силы создают равномерную насыщенность пористой структуры жидкостью, чем устраняется расслоение двухфазного потока в канале под действием внешних сил. Поэтому такой способ организации форсированного теплообмена при фазовых превращениях типичен, например, для систем при изменении их ориентации относительно направления силы тяжести или в условиях пониженной гравитации.

где F, — радиальная нагрузка, Н; Fa — осевая нагрузка, Н; X и К — коэффициенты, учитывающие разное повреждающее действие радиальной и осевой нагрузок (табл. 17.1); V — коэффициент вращения, равный 1 при вращении внутреннего кольца относительно направления нагрузки и 1,2 при вращении наружного кольца; Кб — коэффициент безопасности, учиты-

По расположению в сварном соединении различают горячие трещины в шве, в зоне сплавления, в околошовной зоне, а также в зависимости от ориентировки их относительно направления сварки — продольные и поперечные. Во всех случаях вероятность образования трещин определяется соотношением пластических свойств соединений в т.и.х. и темпом деформаций. Однако степень влияния отдельных технологических и металлургических факторов для каждого вида может быть существенно различной в связи с неодинаковыми условиями формирования химической и физической неоднородности в различных зонах сварного соединения. Особо следует выделить трещины повторного нагрева, образующиеся в ранее наложенных валиках при многослойной сварке в результате термодеформационного воздействия от сварки последующих слоев.

На станке инструмент можно расположить по-разному относительно нарезаемого колеса. Поэтому в станочном зацеплении делительная прямая ИПК может располагаться различным образом по отношению к делительной окружности колеса: 1) она может касаться делительной окружности — нулевая установка инструмента; 2) быть отодвинутой от нее -- положительная установка; 3) пересекать ее — отрицательная установка.

На станке инструмент можно расположить по-разному относительно нарезаемого колеса. Поэтому в станочном зацеплении делительная прямая ИПК может располагаться различным образом по отношению к делительной окружности колеса: 1) она может касаться делительной окружности — нулевая установка инструмента; 2) быть отодвинутой от нее — положительная установка; 3) пересекать ее — отрицательная установка.

Из сказанного вытекает, что при нарезании зубьев колеса приходится считаться с тремя возможными положениями рейки относительно нарезаемого колеса: 1) модульная прямая и делительная> окружность касаются (нарезание с нулевым сдвигом); 2) модульная прямая и делительная окружность не касаются и не пересекаются (нарезание с положительным сдвигом); 3) модульная прямая и делительная окружность пересекаются (нарезание с отрицательным сдвигом).

Наиболее рациональным типом червячных передач по характеру зацепления, условиям передачи силы и заклиниванию смазки являются червячные передачи с червячными колесами, нарезанными червячной фрезой, тождественной но форме с рабочим червяком. При нарезании червячного колеса фреза должна занимать относительно нарезаемого колеса такое же положение, как и рабочий червяк при зацеплении. В этом случае соприкосновение червяка с колесом будет происходить по некоторой линии (линейный контакт). Чтобы уменьшить износ трущихся поверхностей зубьев колеса и витков червяка, обод колеса делают вогнутым и частично охватывающим червяк.

Наиболее рациональным типом червячных передач по характеру зацепления, условиям передачи силы и заклиниванию смазки являются червячные передачи с червячными колесами., нарезанными червячной фрезой, тождественной по форме с рабочим червяком. При нарезании червячного колеса фреза должна занимать относительно нарезаемого колеса такое же положение, как и рабочий червяк при зацеплении. В этом случае соприкосновение червяка с колесом будет происходить по некоторой линии (линейный контакт). Чтобы уменьшить износ трущихся поверхностей зубьев колеса и витков червяка, обод колеса делают вогнутым и частично охватывающим червяк.

Положение исходного производящего контура относительно нарезаемого колеса, при котором делительная прямая рейка касается делителыюй окружности колеса, называют номинальным положением (рис. 5, а). Колесо, зубья

Если бы резец совершал только одно рабочее движение строгания, то, очевидно, прямолинейная кромка резца не могла нарезать криволинейный профиль зуба. Для получения криволинейного профиля резу-щая кромка аЪ должна занимать различные положения относительно нарезаемого профиля, подобно изображенным на рис. 479: ab, а'Ь', а"Ъ" и т. д. Эго относительное движение режущей кромки по отношению профиля носит название движения обкатки. Для осуществления движения обкатки плоскость Я0 резцовой люльки

Форма боковой поверхности червяка зависит от формы профиля инструмента и от его установки относительно нарезаемого червяка.

При вращении нарезаемого колеса вокруг оси О с угловой скоростью со рейка перемещается со скоростью vp = cor. Скорость относительного движения v[l2) точки профиля зубца рейки (относительно нарезаемого колеса) найдем как скорость вращения вокруг мгновенного центра Р с угловой скоростью <о. При «в = 1 рад/сек

Положение исходного производящего контура относительно нарезаемого колеса, при котором делительная прямая рейка касается делительной окружности колеса, называют номинальным положением (рис. 5, а). Колесо, зубья которого образованы при номинальном положении исходной производящей рейки, называют колесом, нарезанным без смещения исходного контура (по старой терминологии - некорригиро-ванное колесо).

Установку резца при нарезании прямоугольных и трапецеидальных резьб относительно нарезаемого винта можно осуществлять двумя способами: переднюю грань резца (рис. 2, а) устанавливать параллельно оси резьбы (при этом достигается высокая точность нарезания, но углы заострения правой и левой режущих кромок будут различны); переднюю грань резца (рис. 2, б) устанавливать нормально к винтовой линии винта (углы заострения обеих режущих кромок будут одинаковы, но точность нарезания понижается, так как стороны профиля получаются криволинейными). В последнем случае искажения профиля резьбы можно избежать, придав резцу специальный криволинейный




Рекомендуем ознакомиться:
Относительно невысокое
Относительно нормального
Относительно основания
Относительно параметра
Остаточную жесткость
Относительно положения
Относительно потенциала
Относительно продольных
Остаточную пластическую
Относительно расчетной
Относительно равновесной
Относительно соответствующих
Относительно стандартного
Относительно выходного
Относительно возможности
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки