Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Отрицательных температурах



вию отрицательных температур (-60° С). Изменения пластичности образцов, предварительно выдержанных в указанных средах в течение 14 суток и испытанных на воздухе, обнаружено не было. Это свидетельствует о механохимической природе изменения пластических свойств.

1 Точнее, изменением температуры, потому что при так называемой обработке холодом изменение свойств достигается тем, что вначале производится охлаждение до отрицательных температур, а затем нагрев до комнатной.

Термическая обработка может быть сложной, состоящей из многочисленных нагревов, прерывистого пли ступенчатого нагрева (охлаждения), охлаждения в область отрицательных температур и т. д. Такая термическая обработка может 'ыть изображена в координатах температура — время. Подобные диаграммы приведены на рис. \~'Л,а,б.

Углерод интенсивно снижает температуру начала и конца мартенситного превращения. При содержании углерода свыше 0,5%) часть мартенситного превращения распространяется на область отрицательных температур, т. е. при непрерывном охлаждении мартенситное превращение в сталях с С>0,5°/о, не заканчивается по достижении комнатной температуры.

Дальнейшее увеличение содержания углерода и легирующего элемента не только сдвигает вправо область перлитного распада, но и снижает мартенситную точку, переходя ее в область отрицательных температур. В этом случае сталь, охлажденная на воздухе до комнатной температуры, сохранит аустенитное состояние.

Радикальное средство для устранения излишнего количества остаточного аустенита в цементованном слое — обработка холодом: детали после закалки охлаждают до отрицательных температур, что вызывает превращение почти всего аустенита в мартенсит в поверхностном слое и повышение твердости. Свойства сердцевины (содержащей малое количество углерода) при этом не изменяются, так как количество остаточного аустенита невелико и не изменяется при охлаждении в области отрицательных температур.

Ввиду высокого содержания легирующих элементов н низкого содержания углерода охлаждение при закалке можно осуществлять с любой скоростью без опасения образования не-мартенситных продуктов превращения аустенита. В наиболее распространенной по составу стали типа «стареющий мартенсит» с <0,03% С; 18% Ni; 10% Со; 5% Мо; 0,5% Ti; 0,1% Al мартенситное превращение начинается при 150—200°С и заканчивается практически полностью (<10% остаточного аустенита) при комнатной температуре. При содержании никеля более 18% мартенситное превращение заканчивается в области отрицательных температур, для этих сталей требуется обработка холодом, но, правда, свойства получаются более высокие (см. дальше).

но снижающих мартенситную точку. В результате увеличивается количество остаточного аустенита (до 30—35%), что иллюстрируется рис. 320. Как .видим, при температурах закалки выше 1000°С температура конца мартенситного превращения находится ниже 0°С, охлаждение до отрицательных температур вызывает более полное превращение остаточного аустенита в мартенсит1.

Практически аустенит с 18% Сг и 8—10% Ni неустойчив, охлаждение его в области отрицательных температур или пластическая деформация при комнатной температуре вызовут образование мартенсита. В сплаве с 18% Сг и 10—12% Ni

На рис. 1.14 построены зависимости относительного сужения и удлинения искусственно состаренных (деформация + нагрев до 250°С) сталей от степени предварительной пластической деформации ед. Как видно, с увеличением степени пластической деформации значения у и 5 падают. Это свидетельствует об охрупчивающем действии на металл пластических деформаций, что при определенных условиях, должно соответствующим образом снижать эксплуатационные характеристики элементов, например, при их работе в условиях воздействия отрицательных температур.

Локальные пластические деформации, возникающие в области концентраторов напряжений могут снижать работоспособность элементов при динамическом нагруже-нии и отрицательных температурах. Поэтому проведены следующие опыты. На полосах квадратного поперечного

По степени раскисления сталь изготовляют кипящей, спокойной и полуспокойной (соответствующие индексы «кп», «сп» и «пс»), Кипящую сталь, содержащую не более 0,07% Si, получают при неполном раскислении металла. Сталь характеризуется резко выраженной неравномерностью распределения серы и фосфора по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Кипящая сталь склонна к старению в околошовной зоне и переходу в хрупкое состояние при отрицательных температурах. В спокойной стали, содержащей не менее 0,12% Si, распределение серы и фосфора более равномерно. Эти стали менее склонны к старению. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталью.

При сварке низкоуглеродистых горячекатаных (в состоянии поставки) сталей при толщине металла до 15 мм на обычных режимах, обеспечивающих небольшие скорости охлаждения, структуры металла шва и околошовной зоны примерно такие, как было рассмотрено выше (рис. 109). Повышение скоростей охлаждения при сварке на форсированных режимах металла повышенной толщины, однопроходных угловых швов, при отрицательных температурах и т. д. может привести к появлению в металле шва и околошовной зоны закалочных структур на участках перегрева и полной и неполной рекристаллизации.

В зависимости от назначения и условий использования смеси содержание в ней пропановой и бутановой фракций должно быть разным. Например, в районах с суровым климатом цистерны без подогрева, размещаемые на улице, должны зимой заполняться пропаном, ибо бутан при отрицательных температурах испаряться не будет. Наоборот, неболь-

Для пуска холодного двигателя при отрицательных температурах требуется бензовоздушная смесь с а 0,05 ... 0,07, что значительно ниже предела воспламенения. Большая часть топлива выбрасывается в атмосферу, не участвуя в сгорании. На режиме прогрева состав смеси близок к пределу воспламенения (а ----- 0,35 ... ... 0,45). При этом углерод топлива, участвующий в горении, из-за недостатка кислорода окисляется только до СО.

На серийно выпускаемых бензиновых двигателях добавка воды снижает выбросы NOX до 40% при одновременном возрастании концентраций CnHm в 2 раза. Наблюдаются некоторое снижение мощности и повышение расхода топлива на режимах малых нагрузок. Добавка воды на образование окиси углерода прямого влияния не оказывает. Применение воды как присадки к топливу затруднено из-за невозможности эксплуатации при отрицательных температурах, наличия солей, отрицательно влияющих на детали двигателя, нестабильности водотопливных эмульсий (необходимо постоянное механическое перемешивание эмульсии).

Значение пробного гидравлического давления для сосудов и аппаратов, работающих при отрицательных температурах принимают таким же, как при температуре 20°С.

Локальные пластические деформации, возникающие в области концентраторов напряжений могут снижать работоспособность элементов при динамическом нагруже-нии и отрицательных температурах. Поэтому проведены следующие опыты. На полосах квадратного поперечного

Механические свойства в зависимости от температуры испытания приведены по результатам испытаний на ударный изгиб при отрицательных температурах (ГОСТ 9454—78) и на растяжение при повышенных температурах (ГОСТ 9651—84).

Ударная вязкость при отрицательных температурах, Дж/сма, не менее

Ударная вязкость при отрицательных температурах, Дж/см2 (ГОСТ, 19281—73, ГОСТ 19282—73)

Ударная вязкость при отрицательных температурах, KCU, Дж/см3, не менее (ГОСТ 19282—73)




Рекомендуем ознакомиться:
Оставаться неподвижной
Отрицательным направлением
Отрицательным температурным коэффициентом
Отрицательной действительной
Отрицательной температуре
Отрицательного градиента
Отрицательного воздействия
Отрицательно сказаться
Отрицательную вещественную
Отсчетной конфигурации
Отсечного золотника
Освещение отопление
Отсутствия пластических
Отсутствия теплообмена
Отсутствие деформаций
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки