Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Обратимого потенциала



1 Поэтому отпускную хрупкость II рода называют иногда обратимой отпускной хрупкостью в отличие от отпускной хрупкости I рода, именуемой необратимой.

Первый вид отпускной хрупкости, называемый необратимой отпускной хрупкостью I рода, наблюдается в результате отпуска при 250— 400 °С. Отличительной особенностью хрупкости I рода является ее необратимый характер: хрупкость этого вида устраняется нагревом до температуры >400'С, а последующий нагрев при 250—400 °С уже не снижает ударной вязкости.

Сталь в состоянии необратимой отпускной хрупкости имеет блестящий межкристаллитный излом. Хрупкое состояние обусловлено возникновением объемнонапряженного состояния, получающегося при неоднородном распаде мартенсита. В связи с этим отпуск в об-

Второй вид отпускной хрупкости, называемый обратимой отпускной хрупкостью или хрупкостью II рода, наблюдается в некоторых сталях определенной легированное™, если они медленно охлаждаются (в печи или даже на воздухе) после отпуска при температурах 500—550 СС или более высоких, т. е. они медленно проходили интервал температур 500—550 °С, или если их слишком долго выдерживают при 500—550 °С. При развитии отпускной хрупкости происходит сильное уменьшение ударной вязкости и, что самое главное, повышение порога хладноломкости. В стали в состоянии отпускной хрупкости уменьшается работа зарождения трещины и особенно ее распространения. Этот вид хрупкости несколько подавляется, если охлаждение с температуры отпуска проводят быстро (Б. о), например в воде (рис. 122, в). При быстром охлаждении с температур отпуска 500—650 °С можно получить волокнистый, характерный для вязкого состояния излом. После медленного охлаждения получается хрупкий кристаллический излом.

Скорость охлаждения после отпуска оказывает большое влияние па величину остаточных напряжений. Чем медленнее охлаждение, тем меньше остаточные напряжения. Быстрое охлаждение в воде от 600 °С создает новые тепловые напряжения. Охлаждение после отпуска на воздухе дает напряжения на поверхности изделия в 7 раз меньшие, а в масле в 2,5 раза меньшие по сравнению с напряжениями при охлаждении в воде. По этой причине изделия сложной формы во избежание их коробления после отпуска при высоких температурах следует охлаждать медленно, а изделия из легированных сталей, склонных к обратимой отпускной хрупкости, после отпуска при 500-650 "С во всех случаях следует охлаждать быстро.

Для подавления обратимой отпускной хрупкости сталь легируют молибденом (или вольфрамом), что очень важно для крупных изделий, в которых даже при охлаждении в воде от температур отпуска нельзя устранить эту хрупкость. Кроме того, молибден (вольфрам) повышает прокаливаемость (особенно в сочетании с никелем), устойчивость стали против отпуска и способствует образованию мелкозернистой стали. Молибден значительно улучшает механические свойства стали после цементации (нитроцементации) и повышает твердость и прокаливаемость цементованного слоя, так как стали, содержащие молибден, не склонны к внутреннему окислению при взаимодействии с газовым карбюризатором.

Стали хроманснл склонны к обратимой отпускной хрупкости и обезуглероживанию при нагреве.

Хромоникельмолчбденовые стали.. Хромоникелевые стали обладают склонностью к обратимой отпускной хрупкости, для устранения которой многие детали из этой стали охлаждают после высокого отпуска в масле, а более крупные — в воде. Однако даже охлаждение в воде для крупногабаритных деталей из глубокопрокаливающихся хромоникелевых сталей не приводит к достаточно быстрому охлаждению внутренних частей, в которых развивается отпускная хрупкость. Для ее предотвращения стали дополнительно легируют молибденом (сталь 40ХН2МА) пли вольфрамом. Небольшие детали из этих сталей (см. табл. 8) после высокого отпуска можно охлаждать на воздухе, а более крутиле — в масле.

Многие штампы имеют большие размеры, поэтому сталь для их изготовления должна обладать высокой прокаливаемостью. Это обеспечивает высокие механические свойства по всему сечению штампа. Важно, чтобы сталь не была склонна к обратимой отпускной хрупкости, так как быстрым охлаждением крупных штампов ее устранить нельзя.

Присутствие в стали 5ХНМ молибдена повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой отпускной хрупкости. Сталь 5ХНМ, обладает высокой устойчивостью переохлажденного аустенита, прокаливается полностью в блоках размером 400x300x300 мм и более. Закаливают штампы в масле. Отпуск крупных штампов проводят при 550—580 (HRC 35—38), а мелких при 500—540 °С (HRC 40—45). Структура стали после отпуска — троосто-сорбит. Механические свойства стали 5ХНМ при 500 °С: ав = 900 МПа, о0>2 = 650 МПа, б = 20-н22 %, ^ = 70 %.

Первые исследования сталей, обработанных методом ВТМО, показали, что в результате данной обработки практически устраняется развитие обратимой отпускной хрупкости конструкционных легированных сталей в опасном в этом отношении интервале температур отпуска [16, 70, 88, 89], резко повышается

Для пересчета потенциалов в неводных растворах по водородной шкале на водную водородную шкалу следует к их значениям V прибавить значение стандартного обратимого потенциала водородного электрода в данном растворителе относительно стандартного обратимого потенциала водородного электрода в воде (Ун2)обР Р (табл. 26):

Способность металла посылать свои ионы в раствор характеризуется количественно значением обратимого потенциала в данных условиях, т. е. (Уа)0бр = (УМе)обр. Способность данного деполяризатора D восстанавливаться, т. е. осуществлять катодный процесс ассимиляции электронов, определяется количественно значением обратимого потенциала данной катодной окислительно-восстановительной реакции, т. е. (Ук)обр = (Уок_в)обр-

Принципиальная возможность протекания процесса электрохимической коррозии металла определяется, таким образом, соотношением обратимого потенциала металла в данных условиях и обратимого потенциала катодного процесса в данных условиях.

т. е. для электрохимического растворения металла необходимо присутствие в электролите окислителя —деполяризатора, обратимый окислительно-восстановительный потенциал которого по-ложительнее обратимого потенциала металла в данных условиях. При соблюдении этого условия Ет ?> О, а ДОГ < 0.

Коррозия металлов с кислородной деполяризацией в большинстве практических случаев происходит в электролитах, соприкасающихся с атмосферой, парциальное давление кислорода в которой рог = 0,21 атм. Следовательно, при определении термодинамической возможности протекания коррозионных процессов с кислородной деполяризацией расчет обратимого потенциала кислородного электрода в этих электролитах следует производить, учитывая реальное парциальное давление кислорода в воздухе (табл. 34).

При определенном смещении потенциала в отрицательную сторону на катоде может начаться какой-либо новый процесс. В водных растворах таким процессом обычно является разряд водородных ионов, обратимый потенциал которого более чем на 1 В отрицательнее обратимого потенциала процесса ионизации кислорода. При достижении обратимого потенциала водородного электрода в данном растворе (Кн2)обР на процесс кислородной деполяризации начинает накладываться процесс водородной деполяризации [кривая (Ун2)обРСЯ на рис. 159] и общий процесс катодной деполяризации будет соответствовать кривой (Vo2)06p ACDEK на рис. 159, которую называют общей кривой катодной поляризации.

По достижении значения обратимого потенциала кислородного электрода (Уог)0бр в водных растворах начинается электролитическое выделение кислорода (кривая TRG на рис. 216).

Определять энергию активации электродных процессов сложно и потому, что QQ=f= const = f (Т), так как (дУ°0бр/дТ)н + 0 (см. табл. 19). ото затруднение можно устранить, или определяя скорость процесса i при близких температурах, или учитывая температурный коэффициент соответствующего обратимого потенциала электродного процесса, или, как указывалось выше, измеряя поляризацию относительно обратимого того же электрода в тех же условиях, включая и температуру.

шение коррозии металла. Этот эффект возрастает с увеличением катодной плотности тока вплоть до полного прекращения электрохимической коррозии, когда потенциал катодно поляризуемого металла достигает значения его обратимого потенциала в данных условиях или станет отрицательнее этого значения. Защитный эффект при катодной поляризации металла от внешнего источника постоянного электрического тока находит широкое практическое использование в виде так называемой катодной электрохимической защиты (электрозащиты) — рис. 257.

Способность данного деполяризатора 9 присоединять электроны, т.е. осуществлять катодннй процесс, характеризуется значением обратимого потенциала данной катодной окислительно- восстановительной реакции ( VK)0g .

Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе CdSO4 ближе к термодинамическому для реакции Cd -»• ->- Cd2+ -f 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода.




Рекомендуем ознакомиться:
Обработки увеличивается
Обработки значительно
Обработкой информации
Обработкой результатов
Обработку необходимо
Обязательного применения
Обработку производят
Обработку заготовок
Обратимых химических
Обратимым процессом
Обратными величинами
Обратного направления
Обратного превращения
Обратного выдавливания
Образцовых динамометров
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки